
GPU porting of scalable implicit solver with
Green’s function-based neural networks by
OpenACC
Kohei Fujita1,2, Yuma Kikuchi1, Tsuyoshi Ichimura1,2, Muneo Hori3,
Lalith Maddegedara1, Naonori Ueda2

1. The University of Tokyo, 2. RIKEN, 3. Japan Agency for Marine-
Earth Science and Technology

WACCPD 2021: Eighth Workshop on Accelerator Programming using Directives

Nov. 14, 2021

1

Introduction
• Variety of computer architecture and HPC applications increasing

• Many architectures, e.g., x86/Arm/Power CPUs & NVIDIA/AMD/Intel GPUs
• New types of applications that combine equation-based methods & data-driven

methods
• Challenging to attain application performance on multiple systems

with low code development cost
• Directive-based parallel programming models developed for

performance portability across systems
• For example, many equation-based applications ported using OpenACC
• However, only few porting examples for applications combining equation-based

methods & data-driven methods

2

Aim of this study

• Show effectiveness of directive-based parallel programming
models for applications combining equation-based methods &
data-driven methods

• Port a partial differential equation (PDE) solver accelerated by data-
driven method: neural network (NN) is used as a preconditioner to
accelerate an implicit solver

• Use OpenACC to port CPU code to GPU: Compare performance with
CPU implementation & CUDA-based GPU implementation to show
effectiveness of directive-based porting

3

Target application
• Partial differential equation (PDE) solver accelerated by neural

network (NN)-based preconditioner
• Solves 3D wave equation (𝜌𝜌 𝜕𝜕2𝑢𝑢𝑖𝑖

𝜕𝜕𝑡𝑡2
= 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑙𝑙

+ 𝑓𝑓𝑖𝑖) using implicit voxel
finite-element method: leads to solving 𝐀𝐀𝛿𝛿𝒖𝒖 = 𝒇𝒇 for each time step

• NNs are used via Green’s functions that reflect property of the PDE for cost
efficient preconditioner

• Originally developed for CPU-based systems; attained high performance on
Arm-based Fugaku and Xeon-based systems

• Operations localized for high-peak performance and scalability – high
performance also expected on large-scale GPU systems

Tsuyoshi Ichimura, Kohei Fujita, Muneo Hori, Lalith Maddegedara, Naonori Ueda, Yuma Kikuchi,
A Fast Scalable Iterative Implicit Solver with Green's function-based Neural Networks, ScalA20:
11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, 2020.

4

Using NN for solving PDEs
• Using NN as a preconditioner in PDE solution

schemes
• Accuracy of final solution assured
• Refinement rate dependent on accuracy of NN estimation

• However, constructing high-accuracy NNs for large-
scale problems within reasonable cost is
challenging

• For small scale problems, accurate solution can be
obtained by using NNs trained on data (pairs of 𝐱𝐱,𝐀𝐀𝐀𝐀) that
cover the modes of the solution

• However, data for only a few modes can be stored for
large-scale problems (accuracy low for its required cost)

• We designed a NN-based preconditioner via use of
Green’s functions that reflect property of the PDE
with localized expansions

• Resolves the problem of direct construction of NNs for
large-scale problems

5

Iterative method for
solving 𝐀𝐀𝛿𝛿𝒖𝒖 = 𝒇𝒇

Preconditioner

Use NN to predict
𝒛𝒛 = 𝐀𝐀−1𝒓𝒓

Use 𝒛𝒛 as search
direction

Update 𝛿𝛿𝒖𝒖
…

𝒓𝒓 = 𝒇𝒇 − 𝐀𝐀𝛿𝛿𝒖𝒖

Iterate until
convergence

Green’s functions
• Function used to solve target equation 𝐿𝐿 𝑢𝑢 = 𝑏𝑏

• For linear operator 𝐿𝐿, Green’s function 𝑔𝑔 is the solution of 𝐿𝐿 𝑔𝑔 = 𝛿𝛿, where 𝛿𝛿 is Dirac’s
delta function

• Solution of 𝐿𝐿 𝑢𝑢 = 𝑏𝑏 can be obtained as convolution of 𝑔𝑔 (i.e., 𝑢𝑢 = 𝑔𝑔 ∗ 𝑏𝑏)
• Example for solving discretized form of 1D wave equation

• Target equation:
𝜕𝜕2𝑢𝑢(𝑥𝑥)
𝜕𝜕𝑥𝑥2

−
4

𝑐𝑐2𝑑𝑑𝑡𝑡2
𝑢𝑢 𝑥𝑥 = 𝑏𝑏 𝑥𝑥

• Green’s function:

𝑔𝑔 𝑠𝑠 = −
𝑐𝑐 𝑑𝑑𝑑𝑑

4
𝑒𝑒−

2 𝑠𝑠2
𝑐𝑐 𝑑𝑑𝑑𝑑

• Solution of target equation can be obtained as:

𝑢𝑢(𝑥𝑥) = �𝑔𝑔 𝑠𝑠 − 𝑥𝑥 𝑏𝑏 𝑠𝑠 𝑑𝑑𝑑𝑑

Computed using GF of wave speed c=1

Analytical solution (wave speed c=1)

6

Reducing evaluation cost of Green’s
functions
• While accurate solutions can be obtained via Green’s functions (GF), its

evaluation cost is very large
• Generate NNs that approximate GF to reduce evaluation cost

• Expand 𝑔𝑔 with respect to 𝑔𝑔 of a uniform problem: 𝑔𝑔 𝑠𝑠 = 𝑔𝑔 𝑠𝑠 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∑𝑖𝑖=1𝑛𝑛 𝑎𝑎𝑖𝑖 𝑠𝑠2
𝑖𝑖−1

• Use NN to estimate coefficients 𝑎𝑎𝑖𝑖

Computed using GF expanded around g
of c=1 with n=2

Analytical solution (wave speed c=1.25)

Highly accurate solution obtained
by only estimating few parameters

7

Green’s function (GF)-based NNs: 3D case

• High-frequency modes included in GF of 3D wave propagation
problem

• Large amount of data required for direct estimation of high-frequency modes
• Evaluate GF of heterogeneous problems by expanding GF around

precomputed GF for homogeneous problem
• Train NNs that evaluate the expansion coefficients
• Enables generation of high-accuracy GF with limited amount of data

Examples of distributions of GF

𝐺𝐺𝑖𝑖𝑖𝑖 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝐺𝐺𝑖𝑖𝑖𝑖 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑐𝑐1 + 𝑐𝑐2𝑥𝑥 + 𝑐𝑐3𝑦𝑦 + 𝑐𝑐4𝑧𝑧)
for 𝑖𝑖 = 1,2,3
𝐺𝐺𝑖𝑖𝑗𝑗 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝐺𝐺𝑖𝑖𝑗𝑗 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(𝑐𝑐5 + 𝑐𝑐6𝑥𝑥 + 𝑐𝑐7𝑦𝑦 + 𝑐𝑐8𝑧𝑧)

for 𝑖𝑖, 𝑗𝑗 = 1,2,3 𝑖𝑖 ≠ 𝑗𝑗

Expansion of GF with 8 coefficients 𝒄𝒄𝟏𝟏, 𝒄𝒄𝟐𝟐, … , 𝒄𝒄𝟖𝟖
Use classifier NNs (input: 216 material properties
of 6 x 6 x 6 element domain)

8

Estimation performance of Green’s
function-based NNs
• High-frequency modes are

resolved in high accuracy with
only a few parameters

• Enables generating NNs with high
accuracy with relatively small
datasets and low training cost

• Low inferencing cost as a shallow
network is used

Evaluation of g expanded around g of
Vs = 50 m/s

9

Implicit solver algorithm using GF-based NNs

• Use GF-based NNs in preconditioner of
conjugate gradient solver

• Accuracy of final solution guaranteed as NN is only
used as a preconditioner

• Computation pattern of standard PDE-based
solvers (random data access with sparse
computation) is converted to that of NNs
(sequential data access with dense computation)

• Expected to lead to fast and efficient preconditioning
of iterative solvers

CG loop (FP64)

Preconditioner (FP32)

Using GF-based NN
predictor to predict
𝒛𝒛 = 𝐀𝐀−1𝒓𝒓

Using 𝒛𝒛 in the search
direction

/* Solving the problem up to
relative error

⁄𝐀𝐀𝛿𝛿𝒖𝒖 − 𝒇𝒇 𝒇𝒇 < 10-8 */

Update 𝛿𝛿𝒖𝒖

/* Computation of Outer-loop */

…

𝒓𝒓 = 𝒇𝒇 − 𝐀𝐀𝛿𝛿𝒖𝒖

10

Iterate until
convergence

Performance on CPU-based system
• Measure performance for computing wave propagation in a human head model

• Highly heterogeneous problem with sharp material interfaces
• Secondary wave speed: Vs = 50 to 120 m/s with void part filled with a soft material with

Vs = 50 m/s
• Fixed primary wave speed (Vp = 200 m/s), density (ρ = 1000 kg/m3) and damping (h =

0.001)
• Discretized using voxel finite-elements with Newmark-β time integration

6.
0E

+6
4.

0E
+7

 (P
a)

Yo
un

g’
s

m
od

ul
us

11

Performance on CPU-based system
• Compare performance with standard conjugate gradient solver (CGBJ: conjugate gradient

solver with 3x3 block Jacobi preconditioning)
• By use of Green’s function-based NN, the number of iterations reduced by 42/5 = 8.4-fold
• Together with high performance of 24.1% of FP64 peak, 4.26-fold speed up attained from

fine-tuned CGBJ on Cascade Lake Xeon-based Oakbridge-CX (Univ. of Tokyo)

12

Distribution of residual
• Although residual is reduced from regions with uniform material

properties (i.e., regions with high NN accuracy), estimation accuracy
is also high for heterogeneous regions, leading to 8-fold reduction in
number of iterations

13

Summary of target application
• We target porting of application combining equation-based and data-

driven methods by directive-based methods
• Here, we target an implicit PDE solver with NN-based preconditioner

• Green’s functions reflecting the underlying PDE is used to gain accuracy of
NN within low cost, leading to 8-fold reduction in number of iterations and 4-
fold speedup from standard equation-based solver on Xeon CPU-based
system

• As the NN-based computation is localized and computation cost is uniform,
high peak performance/scalability and short time-to-solution also expected on
other computer architecture

• In the latter half of presentation, we show GPU porting and measure
computational performance on GPU systems

14

GPU porting of the solver
using OpenACC

15

GPU porting of the solver using OpenACC
• Developed solver comprises data-driven modeling part (GF-based

NN-predictor) and equation-based modeling part
• expected perform well on many architectures including GPUs because of its

dense NN computation and structured data access
• However, appropriate algorithm selection and implementation are necessary

at the kernel level
• All computation is offloaded to GPU, but the GF-based NN-predictor

and matrix-vector product (EBE) are particularly computationally
heavy part, so we focused on tuning them

• In addition, the process layout is optimized for the node configuration
of multiple GPUs and multiple communication ports

16

Voxel finite-element method

• Solves 3D wave equation 𝜌𝜌 𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝑡𝑡2

= 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑙𝑙

+ 𝑓𝑓𝑖𝑖

• We use implicit voxel finite-element method to discretize the
domain

• Continuous memory access is increased, and memory required
to store the information of element is significantly reduced
compared to the case of using tetrahedral elements for
discretization

17

Discretize with
voxel elements

i

j
k

• EBE method performs the matrix-vector product 𝒇𝒇 = A𝒖𝒖 element
wise like 𝒇𝒇 ← ∑𝒇𝒇𝑖𝑖e = ∑A𝑖𝑖

e𝒖𝒖𝑖𝑖e

Porting of EBE kernel - about Element-By-Element method

×

×

=

=

A𝑖𝑖
e is calculated on-the-fly

Element #2

𝒇𝒇

×= Element #3

𝒇𝒇𝑖𝑖e A𝑖𝑖
e 𝒖𝒖𝑖𝑖e

𝒇𝒇 A 𝒖𝒖

×=

EBE method

Normal method
Element #1

necessary to avoid
data recurrence

18

Porting of EBE kernel - using coloring
algorithm

• It is necessary to avoid data
recurrence when adding to
left-side vector

• One of the ways is coloring
the elements into eight
different colors

• Simple and can be used on
GPUs running many threads

• But it results in stride 2 data
access, leading to performance
deterioration

i

j
k

!$acc parallel loop collapse(3)
! Loop for element
do k=1,nez,2
do j=1,ney,2
do i=1,nex,2
! Compute BDBu

…

q(i,j,k,1)=q(i,j,k,1)+BDBu11
q(i,j,k,2)=q(i,j,k,2)+BDBu12
q(i,j,k,3)=q(i,j,k,3)+BDBu13
q(i+1,j,k,1)=q(i+1,j,k,1)+BDBu21
q(i+1,j,k,2)=q(i+1,j,k,2)+BDBu22
q(i+1,j,k,3)=q(i+1,j,k,3)+BDBu23
…
q(i+1,j+1,k+1,1)=q(i+1,j+1,k+1,1)+BDBu81
q(i+1,j+1,k+1,2)=q(i+1,j+1,k+1,2)+BDBu82
q(i+1,j+1,k+1,3)=q(i+1,j+1,k+1,3)+BDBu83

enddo
enddo
enddo
!$acc end parallel

!$acc parallel loop collapse(3)
do k=1,nez,2
do j=1,ney,2
do i=2,nex,2
…
enddo
enddo
enddo
!$acc end parallel

…

!$acc parallel loop collapse(3)
do k=2,nez,2
do j=2,ney,2
do i=2,nex,2
…
enddo
enddo
enddo
!$acc end parallel

i

j

k = odd

i

j

k = odd

i

j

k = even

color #1

color #2

color #8

SIMT computation

SIMT computation

SIMT computation

! Loop for element
do k=1,nez
do j=1,ney
do i=1,nex
! Compute BDBu

…

! Data recurrence happens
q(i,j,k,1)=q(i,j,k,1)+BDBu11
q(i,j,k,2)=q(i,j,k,2)+BDBu12
q(i,j,k,3)=q(i,j,k,3)+BDBu13
q(i+1,j,k,1)=q(i+1,j,k,1)+BDBu21
q(i+1,j,k,2)=q(i+1,j,k,2)+BDBu22
q(i+1,j,k,3)=q(i+1,j,k,3)+BDBu23
…
q(i+1,j+1,k+1,1)=q(i+1,j+1,k+1,1)+BDBu81
q(i+1,j+1,k+1,2)=q(i+1,j+1,k+1,2)+BDBu82
q(i+1,j+1,k+1,3)=q(i+1,j+1,k+1,3)+BDBu83

enddo
enddo
enddo

(Original)

(Coloring)

19

Porting of EBE kernel - using fast atomics

• Recent NVIDIA GPUs have high throughput
hardware-accelerated atomics

• We can expect performance improvement by
avoiding data recurrence using this feature

• By utilizing atomic add function, stride 2
data access in the coloring algorithm is
replaced by continuous access, leading to
performance improvement

!$acc parallel loop collapse(3)
! Loop for element
do k=1,nez
do j=1,ney
do i=1,nex
! Compute BDBu

…

!$acc atomic add
q(i,j,k,1)=q(i,j,k,1)+BDBu11

!$acc atomic add
q(i,j,k,2)=q(i,j,k,2)+BDBu12

!$acc atomic add
q(i,j,k,3)=q(i,j,k,3)+BDBu13

!$acc atomic add
q(i+1,j,k,1)=q(i+1,j,k,1)+BDBu21

!$acc atomic add
q(i+1,j,k,2)=q(i+1,j,k,2)+BDBu22

!$acc atomic add
q(i+1,j,k,3)=q(i+1,j,k,3)+BDBu23
…

!$acc atomic add
q(i+1,j+1,k+1,1)=q(i+1,j+1,k+1,1)+BDBu81

!$acc atomic add
q(i+1,j+1,k+1,2)=q(i+1,j+1,k+1,2)+BDBu82

!$acc atomic add
q(i+1,j+1,k+1,3)=q(i+1,j+1,k+1,3)+BDBu83

enddo
enddo
enddo
!$acc end parallel

SIMT computation

20

! calculation of intermediate variables Bx
B1=…
B2=…
…
B8=…

do k=1,nez
do j=1,ney
do i=1,nex
…
! computation using Bx

…
enddo
enddo
enddo Before

Porting of EBE kernel - element wise computation
• Recent GPUs have large number of

registers, good performance is expected by
reducing data access even if on register
computation is increased

• The kernel algorithm that calculated
intermediate variables in advance are
changed such that these variables
recalculated element wise

• reduces the amount of GPU memory read, which
is expected to lead to speedup

do k=1,nez
do j=1,ney
do i=1,nex
…
! on-the-fly calculation of Bx

B1=…
B2=…
…
B8=…

! computation using Bx
…

enddo
enddo
enddo

After

21

Porting of GF-based NN-predictor
• This kernel computes the convolution of

the information of the surrounding
nodes into the center node

• The outer triple loop is collapsed to
effectively utilize many threads on
GPUs

• Array dimensions are rearranged to
make all data accesses coalesced

• By unrolling the outermost loop for k,
the reads in the innermost loop can be
reused for further performance increase

!$acc parallel loop collapse(3)
do k=1+nef-1,nez+1-nef+1
do j=1+nef-1,ney+1-nef+1
do i=1+nef-1,nex+1-nef+1

we1=wei(i,j,k,1)
we2=wei(i,j,k,2)
…
we8=wei(i,j,k,8)

grs1=0.0
grs2=0.0
grs3=0.0

rs1=rs(i1+i-nd-1,j1+j-nd-1,k1+k-nd-1,1)
rs2=rs(i1+i-nd-1,j1+j-nd-1,k1+k-nd-1,2)
rs3=rs(i1+i-nd-1,j1+j-nd-1,k1+k-nd-1,3)
cocs1=cocs(i1,j1,k1,1)
cocs2=cocs(i1,j1,k1,2)
cocs3=cocs(i1,j1,k1,3)
ww1=we1+we2*cocs1+we3*cocs2+we4*cocs3
ww2=we5+we6*cocs1+we7*cocs2+we8*cocs3
grs1=grs1+rs1*ww1*coe1s(i1,j1,k1,1)
grs1=grs1+rs2*ww2*coe1s(i1,j1,k1,2)
grs1=grs1+rs3*ww2*coe1s(i1,j1,k1,3)
grs2=grs2+rs1*ww2*coe2s(i1,j1,k1,1)
grs2=grs2+rs2*ww1*coe2s(i1,j1,k1,2)
grs2=grs2+rs3*ww2*coe2s(i1,j1,k1,3)
grs3=grs3+rs1*ww2*coe3s(i1,j1,k1,1)
grs3=grs3+rs2*ww2*coe3s(i1,j1,k1,2)
grs3=grs3+rs3*ww1*coe3s(i1,j1,k1,3)

do j1=1,nd*2+1

do i1=1,nd*2+1

do k1=1,nd*2+1

SIMT computation

enddo
enddo
enddo

!$acc loop seq

!$acc loop seq

!$acc loop seq

enddo
enddo
enddo

zs(i,j,k,1)=grs1
zs(i,j,k,2)=grs2
zs(i,j,k,3)=grs3

!$acc end parallel

…

22

Mapping of process for efficient
communication

• Recent GPU based compute nodes are
often equipped with multiple GPUs and
multiple communication ports with non-
uniform latency and bandwidth

• It is important to allocate process and
communication ports according to these
configuration

• We arranged the process mapping in
such a way that the communication
ports close to each GPU are used and
fast communication through NVLink and
NVSwitch within node is increased

NVLink3
×12

A100
GPU
#1

PLX

Xeon
CPU
#1

DDR4

PCIe Gen4
×16

×16

N
IC

UPI

A100
GPU
#2

A100
GPU
#3

A100
GPU
#4

A100
GPU
#5

A100
GPU
#6

A100
GPU
#7

A100
GPU
#8

PLX

N
IC

PLX

N
IC

PLX

N
IC

Xeon
CPU
#2

DDR4

NVSwitch

… … … … … … … …

×16

a) Before b) After16

node #1
node #3 node #4

16

8

1node #2

node #31 node #32

・
・
・
・
・
・
・
・
・
・
・

16

node #1

node #32

16

4

2

node #31

・
・
・
・
・
・
・

node #2 node #3

node #30node #29
・
・
・
・
・
・
・
・
・
・
・

・
・
・
・
・
・
・

・
・
・
・
・
・
・

・
・
・
・
・
・
・

node #5 node #6 node #7 node #8

GPU #1
fast communication through NVLink and NVSwitch

Same color means
using same NIC.

𝑦𝑦

𝑥𝑥

GPU #2 GPU #3 GPU #4

GPU #5 GPU #6 GPU #7 GPU #8
GPU #1 GPU #2 GPU #3 GPU #4 GPU #5 GPU #6 GPU #7 GPU #8

node #4

(Diagram of compute node (A) of ABCI)

23

Performance measurement environment
• We measured performance on AI Bridging Cloud Infrastructure (ABCI, 12th in

TOP 500, June 2021) at National Institute of Advanced Industrial Science and
Technology (AIST)

• Compare performance between CPUs and GPUs on one node: 2 CPUs for
CPU measurement and 8 GPUs for GPU measurement

• Highly-tuned code implemented using SIMD intrinsics (AVX-512) and OpenMP
is used for CPU measurement

• Fix the problem size to 256 × 256 × 512 elements (101,649,411 DOF) per GPU

Compute node (A) Hardware peak per node

CPU Intel Xeon Platinum 8360Y
(2.40 GHz, 36 Cores) × 2

2.764 × 2 = 5.529 TFLOPS

GPU NVIDIA A100 NVLink
40 GB HBM2 × 8

9.7 × 8 = 77.6 TFLOPS
1.37 × 8 = 12.4 TB/s

Interconnect Infiniband HDR
(200 Gbps) × 4

100 GB/s

• The FP64 peak performance ratio
between CPU and GPU is 14.0x
(memory bandwidth is 30.4x)

• All compute nodes are interconnected
with full bisection

24

Kernel level performance - EBE kernel (FP64)
• Due to spill/fill caused by many intermediate variables and data

access, the performance on CPU is not so high
• On GPU, spill/fill is avoided thanks to the large number of registers

• Coloring: 55% of FP64 peak, even higher performance than CPU
• Atomics: 72% of FP64 peak, 1.31x faster than coloring

• Element wise computation of intermediate variables led to 75.0% of
FP64 peak

• 93.0% of performance implemented by CUDA is attained using OpenACC

0.124 (93.7x speedup)

11.62

0 2 4 6 8 10 12 14
Elapsed time (s)

CPU

GPU 7.27 ×8 TFLOPS (75.0% to FP64 peak)

0.31 ×2 TFLOPS (11.2% to FP64 peak)
(AVX-512 & OpenMP)

(OpenACC)

25

Kernel level performance – GF-based NN predictor
kernel (FP32)

• Due to the high affinity of algorithm to recent architectures, the
CPU implementation has a high performance of 35.3% of the
FP32 peak

• But the A100 GPU implementation has an even higher
performance of 49.4% of the FP32 peak

• 85.5% of performance implemented by CUDA is attained using OpenACC

0.246 (19.6x speedup)

4.83

0 1 2 3 4 5 6
Elapsed time(s)

CPU

GPU 9.63 ×8 TFLOPS (49.4% to FP32 peak)

1.95 ×2 TFLOPS (35.3% to FP32 peak)
(AVX-512 & OpenMP)

(OpenACC)

26

Time-to-solution of the whole solver (mixed-precision)
• Solving the problem up to relative error ⁄𝐀𝐀𝛿𝛿𝒖𝒖 − 𝒇𝒇 𝒇𝒇 < 10-8

• 38.9-fold speedup from the highly-tuned CPU implementation
(AVX-512) on the A100 node

• The FP64 peak performance ratio between CPU and GPU is 14.0x and
the memory bandwidth is 30.4x

• Given these differences and small porting cost of OpenACC, 38.9x
speedup seems to be very good

0.612 (38.9x speedup)

23.96

0 5 10 15 20 25 30

Elapsed time (s)

CPU

GPU 6.25 ×8 TFLOPS (64.4% to FP64 peak)

0.64 ×2 TFLOPS (23.1% to FP64 peak)

27

(AVX-512 & OpenMP)

(OpenACC)

Speedup from conventional method (CGBJ) on CPU

• Compared to the highly-tuned CPU implementation of
conventional method (CGBJ: Conjugate Gradient solver
with 3×3 Block Jacobi preconditioning), 158.5-fold
speedup was achieved on GPU by OpenACC

28

0.612

23.96

97.04

0 20 40 60 80 100 120
elapsed time (s)

158.5x speedup

(OpenACC)

(AVX-512 & OpenMP)

GPU (Proposed)

CPU (Proposed)

CPU (CGBJ)

(AVX-512 & OpenMP)

Performance comparison with the conventional
method (CGBJ) on GPU

• The refinement rate of preconditioner is better than that of CGBJ
• The peak performance to FP64 improved from 41.9% of CGBJ

to 64.4%

Took 6 iterations
Took 43 iterations

29

Threshold value

Weak Scaling on ABCI A100 node system
• The head model is duplicated in the 𝑥𝑥 and 𝑦𝑦 directions

• Fix the problem size to 256 × 256 × 512 elements per GPU
• 83.4% weak scaling efficiency from 1 node (8 GPUs) to 32 nodes

(256 GPUs)

0.007 0.021 0.054 0.061 0.058 0.062

0.617 0.62
0.671 0.679 0.679 0.685

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

8 16 32 64 128 256

el
ap

se
d

tim
e

(s
)

of GPUs

0.624 0.642

0.725 0.741 0.738 0.748

Scalability - 97.1% 86.9% 84.2% 84.5% 83.4%

point-to-point communication

Others

30

Summary
• As an example of application combining equation-based and data-driven

methods, we ported an implicit PDE solver with NN-based preconditioner
• Circumvents the problem of low accuracy in NN-based estimations by using NN in

Green’s functions that reflect property of the PDE
• Selected an appropriate algorithm and tuned it at the kernel level

considering the characteristics of the GPU using OpenACC
• At the kernel level;

• EBE: 93.7x speedup from CPU, 93.0% of performance implemented by CUDA
• GF-based NN-predictor: 19.6x speedup from CPU, 85.5% of performance

implemented by CUDA
• For whole solver;

• 158x speedup from conventional method on CPU, 38.9x speedup from proposed
method on CPU, 64.4% of the FP64 peak

• 83.4% of weak scaling efficiency was obtained from 1 node (8 GPUs) to 32 nodes
(256 GPUs) on ABCI A100 system

• Same approach expected to be effective in porting other HPC applications
combining data-driven and equation-based methods with directive-based
programming models

31

	GPU porting of scalable implicit solver with Green’s function-based neural networks by OpenACC
	Introduction
	Aim of this study
	Target application
	Using NN for solving PDEs
	Green’s functions
	Reducing evaluation cost of Green’s functions
	Green’s function (GF)-based NNs: 3D case
	Estimation performance of Green’s function-based NNs
	Implicit solver algorithm using GF-based NNs
	Performance on CPU-based system
	Performance on CPU-based system
	Distribution of residual
	Summary of target application
	GPU porting of the solver using OpenACC
	 GPU porting of the solver using OpenACC
	 Voxel finite-element method
	
	Porting of EBE kernel - using coloring algorithm
	Porting of EBE kernel - using fast atomics
	Porting of EBE kernel - element wise computation
	Porting of GF-based NN-predictor
	Mapping of process for efficient communication
	Performance measurement environment
	Kernel level performance - EBE kernel (FP64)
	Kernel level performance – GF-based NN predictor kernel (FP32)
	Time-to-solution of the whole solver (mixed-precision)
	Speedup from conventional method (CGBJ) on CPU
	Performance comparison with the conventional method (CGBJ) on GPU
	Weak Scaling on ABCI A100 node system
	Summary

