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Introduction
• Variety of computer architecture and HPC applications increasing

• Many architectures, e.g., x86/Arm/Power CPUs & NVIDIA/AMD/Intel GPUs
• New types of applications that combine equation-based methods & data-driven 

methods
• Challenging to attain application performance on multiple systems 

with low code development cost
• Directive-based parallel programming models developed for 

performance portability across systems
• For example, many equation-based applications ported using OpenACC
• However, only few porting examples for applications combining equation-based 

methods & data-driven methods
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Aim of this study

• Show effectiveness of directive-based parallel programming 
models for applications combining equation-based methods & 
data-driven methods

• Port a partial differential equation (PDE) solver accelerated by data-
driven method: neural network (NN) is used as a preconditioner to 
accelerate an implicit solver

• Use OpenACC to port CPU code to GPU: Compare performance with 
CPU implementation & CUDA-based GPU implementation to show 
effectiveness of directive-based porting
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Target application
• Partial differential equation (PDE) solver accelerated by neural 

network (NN)-based preconditioner
• Solves 3D wave equation (𝜌𝜌 𝜕𝜕2𝑢𝑢𝑖𝑖

𝜕𝜕𝑡𝑡2
= 𝜕𝜕

𝜕𝜕𝑥𝑥𝑗𝑗
𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑙𝑙

+ 𝑓𝑓𝑖𝑖) using implicit voxel 
finite-element method: leads to solving 𝐀𝐀𝛿𝛿𝒖𝒖 = 𝒇𝒇 for each time step

• NNs are used via Green’s functions that reflect property of the PDE for cost 
efficient preconditioner

• Originally developed for CPU-based systems; attained high performance on 
Arm-based Fugaku and Xeon-based systems

• Operations localized for high-peak performance and scalability – high 
performance also expected on large-scale GPU systems 

Tsuyoshi Ichimura, Kohei Fujita, Muneo Hori, Lalith Maddegedara, Naonori Ueda, Yuma Kikuchi, 
A Fast Scalable Iterative Implicit Solver with Green's function-based Neural Networks, ScalA20: 
11th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, 2020.
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Using NN for solving PDEs
• Using NN as a preconditioner in PDE solution 

schemes
• Accuracy of final solution assured
• Refinement rate dependent on accuracy of NN estimation

• However, constructing high-accuracy NNs for large-
scale problems within reasonable cost is 
challenging 

• For small scale problems, accurate solution can be 
obtained by using NNs trained on data (pairs of 𝐱𝐱,𝐀𝐀𝐱𝐱) that 
cover the modes of the solution

• However, data for only a few modes can be stored for 
large-scale problems (accuracy low for its required cost)

• We designed a NN-based preconditioner via use of 
Green’s functions that reflect property of the PDE 
with localized expansions

• Resolves the problem of direct construction of NNs for 
large-scale problems

5

Iterative method for 
solving 𝐀𝐀𝛿𝛿𝒖𝒖 = 𝒇𝒇

Preconditioner

Use NN to predict
𝒛𝒛 = 𝐀𝐀−1𝒓𝒓

Use 𝒛𝒛 as search 
direction

Update 𝛿𝛿𝒖𝒖
…

𝒓𝒓 = 𝒇𝒇 − 𝐀𝐀𝛿𝛿𝒖𝒖

Iterate until
convergence



Green’s functions
• Function used to solve target equation 𝐿𝐿 𝑢𝑢 = 𝑏𝑏

• For linear operator 𝐿𝐿, Green’s function 𝑔𝑔 is the solution of 𝐿𝐿 𝑔𝑔 = 𝛿𝛿, where 𝛿𝛿 is Dirac’s 
delta function

• Solution of 𝐿𝐿 𝑢𝑢 = 𝑏𝑏 can be obtained as convolution of 𝑔𝑔 (i.e., 𝑢𝑢 = 𝑔𝑔 ∗ 𝑏𝑏)
• Example for solving discretized form of 1D wave equation

• Target equation:
𝜕𝜕2𝑢𝑢(𝑥𝑥)
𝜕𝜕𝑥𝑥2

−
4

𝑐𝑐2𝑑𝑑𝑡𝑡2
𝑢𝑢 𝑥𝑥 = 𝑏𝑏 𝑥𝑥

• Green’s function:

𝑔𝑔 𝑠𝑠 = −
𝑐𝑐 𝑑𝑑𝑡𝑡

4
𝑒𝑒−

2 𝑠𝑠2
𝑐𝑐 𝑑𝑑𝑡𝑡

• Solution of target equation can be obtained as:

𝑢𝑢(𝑥𝑥) = �𝑔𝑔 𝑠𝑠 − 𝑥𝑥 𝑏𝑏 𝑠𝑠 𝑑𝑑𝑠𝑠

Computed using GF of wave speed c=1

Analytical solution (wave speed c=1)
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Reducing evaluation cost of Green’s 
functions
• While accurate solutions can be obtained via Green’s functions (GF), its 

evaluation cost is very large
• Generate NNs that approximate GF to reduce evaluation cost

• Expand 𝑔𝑔 with respect to 𝑔𝑔 of a uniform problem: 𝑔𝑔 𝑠𝑠 = 𝑔𝑔 𝑠𝑠 𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 ∑𝑖𝑖=1𝑛𝑛 𝑎𝑎𝑖𝑖 𝑠𝑠2
𝑖𝑖−1

• Use NN to estimate coefficients 𝑎𝑎𝑖𝑖

Computed using GF expanded around g
of c=1 with n=2

Analytical solution (wave speed c=1.25)

Highly accurate solution obtained 
by only estimating few parameters
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Green’s function (GF)-based NNs: 3D case

• High-frequency modes included in GF of 3D wave propagation 
problem

• Large amount of data required for direct estimation of high-frequency modes
• Evaluate GF of heterogeneous problems by expanding GF around 

precomputed GF for homogeneous problem
• Train NNs that evaluate the expansion coefficients
• Enables generation of high-accuracy GF with limited amount of data

Examples of distributions of GF

𝐺𝐺𝑖𝑖𝑖𝑖 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 = 𝐺𝐺𝑖𝑖𝑖𝑖 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏(𝑐𝑐1 + 𝑐𝑐2𝑥𝑥 + 𝑐𝑐3𝑦𝑦 + 𝑐𝑐4𝑧𝑧)
for 𝑖𝑖 = 1,2,3
𝐺𝐺𝑖𝑖𝑖𝑖 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝐺𝐺𝑖𝑖𝑖𝑖 𝑥𝑥,𝑦𝑦, 𝑧𝑧 𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏(𝑐𝑐5 + 𝑐𝑐6𝑥𝑥 + 𝑐𝑐7𝑦𝑦 + 𝑐𝑐8𝑧𝑧)

for 𝑖𝑖, 𝑗𝑗 = 1,2,3 𝑖𝑖 ≠ 𝑗𝑗

Expansion of GF with 8 coefficients 𝒄𝒄𝟏𝟏, 𝒄𝒄𝟐𝟐, … , 𝒄𝒄𝟖𝟖
Use classifier NNs (input: 216 material properties 
of 6 x 6 x 6 element domain)
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Estimation performance of Green’s 
function-based NNs
• High-frequency modes are 

resolved in high accuracy with 
only a few parameters

• Enables generating NNs with high 
accuracy with relatively small 
datasets and low training cost

• Low inferencing cost as a shallow 
network is used

Evaluation of g expanded around g of 
Vs = 50 m/s
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Implicit solver algorithm using GF-based NNs

• Use GF-based NNs in preconditioner of 
conjugate gradient solver

• Accuracy of final solution guaranteed as NN is only 
used as a preconditioner

• Computation pattern of standard PDE-based 
solvers (random data access with sparse 
computation) is converted to that of NNs 
(sequential data access with dense computation)

• Expected to lead to fast and efficient preconditioning 
of iterative solvers

CG loop (FP64)

Preconditioner (FP32)

Using GF-based NN 
predictor to predict
𝒛𝒛 = 𝐀𝐀−1𝒓𝒓

Using 𝒛𝒛 in the search 
direction

/* Solving the problem up to 
relative error 

⁄𝐀𝐀𝛿𝛿𝒖𝒖 − 𝒇𝒇 𝒇𝒇 < 10-8 */ 

Update 𝛿𝛿𝒖𝒖

/* Computation of Outer-loop */

…

𝒓𝒓 = 𝒇𝒇 − 𝐀𝐀𝛿𝛿𝒖𝒖

10

Iterate until
convergence



Performance on CPU-based system
• Measure performance for computing wave propagation in a human head model

• Highly heterogeneous problem with sharp material interfaces
• Secondary wave speed: Vs = 50 to 120 m/s with void part filled with a soft material with 

Vs = 50 m/s
• Fixed primary wave speed (Vp = 200 m/s), density (ρ = 1000 kg/m3) and damping (h = 

0.001)
• Discretized using voxel finite-elements with Newmark-β time integration

6.
0E

+6
4.

0E
+7

 (P
a)

Yo
un

g’
s 

m
od

ul
us

11



Performance on CPU-based system
• Compare performance with standard conjugate gradient solver (CGBJ: conjugate gradient 

solver with 3x3 block Jacobi preconditioning)
• By use of Green’s function-based NN, the number of iterations reduced by 42/5 = 8.4-fold
• Together with high performance of 24.1% of FP64 peak, 4.26-fold speed up attained from 

fine-tuned CGBJ on Cascade Lake Xeon-based Oakbridge-CX (Univ. of Tokyo)
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Distribution of residual
• Although residual is reduced from regions with uniform material 

properties (i.e., regions with high NN accuracy), estimation accuracy 
is also high for heterogeneous regions, leading to 8-fold reduction in 
number of iterations
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Summary of target application
• We target porting of application combining equation-based and data-

driven methods by directive-based methods
• Here, we target an implicit PDE solver with NN-based preconditioner

• Green’s functions reflecting the underlying PDE is used to gain accuracy of 
NN within low cost, leading to 8-fold reduction in number of iterations and 4-
fold speedup from standard equation-based solver on Xeon CPU-based 
system

• As the NN-based computation is localized and computation cost is uniform, 
high peak performance/scalability and short time-to-solution also expected on 
other computer architecture

• In the latter half of presentation, we show GPU porting and measure 
computational performance on GPU systems

14



GPU porting of the solver 
using OpenACC
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GPU porting of the solver using OpenACC
• Developed solver comprises data-driven modeling part (GF-based 

NN-predictor) and equation-based modeling part
• expected perform well on many architectures including GPUs because of its 

dense NN computation and structured data access
• However, appropriate algorithm selection and implementation are necessary 

at the kernel level
• All computation is offloaded to GPU, but the GF-based NN-predictor 

and matrix-vector product (EBE) are particularly computationally 
heavy part, so we focused on tuning them

• In addition, the process layout is optimized for the node configuration 
of multiple GPUs and multiple communication ports
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Voxel finite-element method

• Solves 3D wave equation 𝜌𝜌 𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝑡𝑡2

= 𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑙𝑙

+ 𝑓𝑓𝑖𝑖

• We use implicit voxel finite-element method to discretize the 
domain

• Continuous memory access is increased, and memory required 
to store the information of element is significantly reduced 
compared to the case of using tetrahedral elements for 
discretization
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Discretize with 
voxel elements
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• EBE method performs the matrix-vector product 𝒇𝒇 = A𝒖𝒖 element 
wise like 𝒇𝒇 ← ∑𝒇𝒇𝑖𝑖e = ∑A𝑖𝑖

e𝒖𝒖𝑖𝑖e

Porting of EBE kernel - about Element-By-Element method

×

×

=

=

A𝑖𝑖
e is calculated on-the-fly

Element #2

𝒇𝒇

×= Element #3

𝒇𝒇𝑖𝑖e A𝑖𝑖
e 𝒖𝒖𝑖𝑖e

𝒇𝒇 A 𝒖𝒖

×=

EBE method

Normal method
Element #1

necessary to avoid 
data recurrence
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Porting of EBE kernel - using coloring 
algorithm 

• It is necessary to avoid data 
recurrence when adding to 
left-side vector

• One of the ways is coloring 
the elements into eight 
different colors

• Simple and can be used on 
GPUs running many threads

• But it results in stride 2 data 
access, leading to performance 
deterioration

i

j
k

!$acc parallel loop collapse(3)
! Loop for element
do k=1,nez,2
do j=1,ney,2
do i=1,nex,2
! Compute BDBu

…

q(i,j,k,1)=q(i,j,k,1)+BDBu11
q(i,j,k,2)=q(i,j,k,2)+BDBu12
q(i,j,k,3)=q(i,j,k,3)+BDBu13
q(i+1,j,k,1)=q(i+1,j,k,1)+BDBu21
q(i+1,j,k,2)=q(i+1,j,k,2)+BDBu22
q(i+1,j,k,3)=q(i+1,j,k,3)+BDBu23
…
q(i+1,j+1,k+1,1)=q(i+1,j+1,k+1,1)+BDBu81
q(i+1,j+1,k+1,2)=q(i+1,j+1,k+1,2)+BDBu82
q(i+1,j+1,k+1,3)=q(i+1,j+1,k+1,3)+BDBu83

enddo
enddo
enddo
!$acc end parallel

!$acc parallel loop collapse(3)
do k=1,nez,2
do j=1,ney,2
do i=2,nex,2
…
enddo
enddo
enddo
!$acc end parallel

…

!$acc parallel loop collapse(3)
do k=2,nez,2
do j=2,ney,2
do i=2,nex,2
…
enddo
enddo
enddo
!$acc end parallel

i

j

k = odd

i

j

k = odd

i

j

k = even

color #1

color #2

color #8 

SIMT computation 

SIMT computation 

SIMT computation 

! Loop for element
do k=1,nez
do j=1,ney
do i=1,nex
! Compute BDBu

…

! Data recurrence happens
q(i,j,k,1)=q(i,j,k,1)+BDBu11
q(i,j,k,2)=q(i,j,k,2)+BDBu12
q(i,j,k,3)=q(i,j,k,3)+BDBu13
q(i+1,j,k,1)=q(i+1,j,k,1)+BDBu21
q(i+1,j,k,2)=q(i+1,j,k,2)+BDBu22
q(i+1,j,k,3)=q(i+1,j,k,3)+BDBu23
…
q(i+1,j+1,k+1,1)=q(i+1,j+1,k+1,1)+BDBu81
q(i+1,j+1,k+1,2)=q(i+1,j+1,k+1,2)+BDBu82
q(i+1,j+1,k+1,3)=q(i+1,j+1,k+1,3)+BDBu83

enddo
enddo
enddo

(Original)

(Coloring)
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Porting of EBE kernel - using fast atomics 

• Recent NVIDIA GPUs have high throughput 
hardware-accelerated atomics

• We can expect performance improvement by 
avoiding data recurrence using this feature

• By utilizing atomic add function, stride 2 
data access in the coloring algorithm is 
replaced by continuous access, leading to 
performance improvement

!$acc parallel loop collapse(3)
! Loop for element
do k=1,nez
do j=1,ney
do i=1,nex
! Compute BDBu

…

!$acc atomic add
q(i,j,k,1)=q(i,j,k,1)+BDBu11

!$acc atomic add
q(i,j,k,2)=q(i,j,k,2)+BDBu12

!$acc atomic add
q(i,j,k,3)=q(i,j,k,3)+BDBu13

!$acc atomic add
q(i+1,j,k,1)=q(i+1,j,k,1)+BDBu21

!$acc atomic add
q(i+1,j,k,2)=q(i+1,j,k,2)+BDBu22

!$acc atomic add
q(i+1,j,k,3)=q(i+1,j,k,3)+BDBu23
…

!$acc atomic add
q(i+1,j+1,k+1,1)=q(i+1,j+1,k+1,1)+BDBu81

!$acc atomic add
q(i+1,j+1,k+1,2)=q(i+1,j+1,k+1,2)+BDBu82

!$acc atomic add
q(i+1,j+1,k+1,3)=q(i+1,j+1,k+1,3)+BDBu83

enddo
enddo
enddo
!$acc end parallel

SIMT computation 
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! calculation of intermediate variables Bx 
B1=…
B2=…
…
B8=…

do k=1,nez
do j=1,ney
do i=1,nex
…
! computation using Bx

…
enddo
enddo
enddo Before

Porting of EBE kernel - element wise computation
• Recent GPUs have large number of 

registers, good performance is expected by 
reducing data access even if on register 
computation is increased

• The kernel algorithm that calculated 
intermediate variables in advance are 
changed such that these variables 
recalculated element wise

• reduces the amount of GPU memory read, which 
is expected to lead to speedup 

do k=1,nez
do j=1,ney
do i=1,nex
…
! on-the-fly calculation of Bx

B1=…
B2=…
…
B8=…

! computation using Bx
…

enddo
enddo
enddo

After
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Porting of GF-based NN-predictor 
• This kernel computes the convolution of 

the information of the surrounding 
nodes into the center node

• The outer triple loop is collapsed to 
effectively utilize many threads on 
GPUs

• Array dimensions are rearranged to 
make all data accesses coalesced

• By unrolling the outermost loop for k, 
the reads in the innermost loop can be 
reused for further performance increase 

!$acc parallel loop collapse(3)
do k=1+nef-1,nez+1-nef+1
do j=1+nef-1,ney+1-nef+1
do i=1+nef-1,nex+1-nef+1

we1=wei(i,j,k,1)
we2=wei(i,j,k,2) 
…
we8=wei(i,j,k,8)

grs1=0.0
grs2=0.0
grs3=0.0

rs1=rs(i1+i-nd-1,j1+j-nd-1,k1+k-nd-1,1)
rs2=rs(i1+i-nd-1,j1+j-nd-1,k1+k-nd-1,2)
rs3=rs(i1+i-nd-1,j1+j-nd-1,k1+k-nd-1,3)
cocs1=cocs(i1,j1,k1,1)
cocs2=cocs(i1,j1,k1,2)
cocs3=cocs(i1,j1,k1,3)
ww1=we1+we2*cocs1+we3*cocs2+we4*cocs3
ww2=we5+we6*cocs1+we7*cocs2+we8*cocs3
grs1=grs1+rs1*ww1*coe1s(i1,j1,k1,1)
grs1=grs1+rs2*ww2*coe1s(i1,j1,k1,2)
grs1=grs1+rs3*ww2*coe1s(i1,j1,k1,3)
grs2=grs2+rs1*ww2*coe2s(i1,j1,k1,1)
grs2=grs2+rs2*ww1*coe2s(i1,j1,k1,2)
grs2=grs2+rs3*ww2*coe2s(i1,j1,k1,3)
grs3=grs3+rs1*ww2*coe3s(i1,j1,k1,1)
grs3=grs3+rs2*ww2*coe3s(i1,j1,k1,2)
grs3=grs3+rs3*ww1*coe3s(i1,j1,k1,3)

do j1=1,nd*2+1

do i1=1,nd*2+1

do k1=1,nd*2+1

SIMT computation 

enddo
enddo
enddo

!$acc loop seq

!$acc loop seq

!$acc loop seq

enddo
enddo
enddo

zs(i,j,k,1)=grs1
zs(i,j,k,2)=grs2
zs(i,j,k,3)=grs3

!$acc end parallel

…
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Mapping of process for efficient 
communication 

• Recent GPU based compute nodes are 
often equipped with multiple GPUs and 
multiple communication ports with non-
uniform latency and bandwidth

• It is important to allocate process and 
communication ports according to these 
configuration

• We arranged the process mapping in 
such a way that the communication 
ports close to each GPU are used and 
fast communication through NVLink and 
NVSwitch within node is increased
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Performance measurement environment
• We measured performance on AI Bridging Cloud Infrastructure (ABCI, 12th in

TOP 500, June 2021) at National Institute of Advanced Industrial Science and 
Technology (AIST)

• Compare performance between CPUs and GPUs on one node: 2 CPUs for 
CPU measurement and 8 GPUs for GPU measurement

• Highly-tuned code implemented using SIMD intrinsics (AVX-512) and OpenMP 
is used for CPU measurement

• Fix the problem size to 256 × 256 × 512 elements (101,649,411 DOF) per GPU

Compute node (A) Hardware peak per node

CPU Intel Xeon Platinum 8360Y 
(2.40 GHz, 36 Cores) × 2

2.764 × 2 = 5.529 TFLOPS

GPU NVIDIA A100 NVLink
40 GB HBM2 × 8

9.7 × 8 = 77.6 TFLOPS
1.37 × 8 = 12.4 TB/s

Interconnect Infiniband HDR
(200 Gbps) × 4

100 GB/s

• The FP64 peak performance ratio  
between CPU and GPU is 14.0x 
(memory bandwidth is 30.4x)

• All compute nodes are interconnected 
with full bisection
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Kernel level performance - EBE kernel (FP64)
• Due to spill/fill caused by many intermediate variables and data 

access, the performance on CPU is not so high
• On GPU, spill/fill is avoided thanks to the large number of registers

• Coloring: 55% of FP64 peak, even higher performance than CPU
• Atomics: 72% of FP64 peak, 1.31x faster than coloring

• Element wise computation of intermediate variables led to 75.0% of 
FP64 peak

• 93.0% of performance implemented by CUDA is attained using OpenACC

0.124 (93.7x speedup)

11.62

0 2 4 6 8 10 12 14
Elapsed time (s)

CPU

GPU 7.27 ×8 TFLOPS (75.0% to FP64 peak) 

0.31 ×2 TFLOPS (11.2% to FP64 peak) 
(AVX-512 & OpenMP)

(OpenACC)
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Kernel level performance – GF-based NN predictor 
kernel (FP32)

• Due to the high affinity of algorithm to recent architectures, the 
CPU implementation has a high performance of 35.3% of the 
FP32 peak

• But the A100 GPU implementation has an even higher 
performance of 49.4% of the FP32 peak

• 85.5% of performance implemented by CUDA is attained using OpenACC

0.246 (19.6x speedup)

4.83

0 1 2 3 4 5 6
Elapsed time(s)

CPU

GPU 9.63 ×8 TFLOPS (49.4% to FP32 peak) 

1.95 ×2 TFLOPS (35.3% to FP32 peak) 
(AVX-512 & OpenMP)

(OpenACC)
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Time-to-solution of the whole solver (mixed-precision)
• Solving the problem up to relative error ⁄𝐀𝐀𝛿𝛿𝒖𝒖 − 𝒇𝒇 𝒇𝒇 < 10-8

• 38.9-fold speedup from the highly-tuned CPU implementation 
(AVX-512) on the A100 node

• The FP64 peak performance ratio between CPU and GPU is 14.0x and 
the memory bandwidth is 30.4x

• Given these differences and small porting cost of OpenACC, 38.9x 
speedup seems to be very good

0.612 (38.9x speedup)

23.96

0 5 10 15 20 25 30

Elapsed time (s)

CPU

GPU 6.25 ×8 TFLOPS (64.4% to FP64 peak) 

0.64 ×2 TFLOPS (23.1% to FP64 peak) 
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Speedup from conventional method (CGBJ) on CPU

• Compared to the highly-tuned CPU implementation of 
conventional method (CGBJ: Conjugate Gradient solver 
with 3×3 Block Jacobi preconditioning), 158.5-fold 
speedup was achieved on GPU by OpenACC

28
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97.04

0 20 40 60 80 100 120
elapsed time (s)

158.5x speedup

(OpenACC)

(AVX-512 & OpenMP)

GPU (Proposed)

CPU (Proposed)

CPU (CGBJ)

(AVX-512 & OpenMP)



Performance comparison with the conventional 
method (CGBJ) on GPU

• The refinement rate of preconditioner is better than that of CGBJ
• The peak performance to FP64 improved from 41.9% of CGBJ 

to 64.4%

Took 6 iterations
Took 43 iterations
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Weak Scaling on ABCI A100 node system
• The head model is duplicated in the 𝑥𝑥 and 𝑦𝑦 directions

• Fix the problem size to 256 × 256 × 512 elements per GPU
• 83.4% weak scaling efficiency from 1 node (8 GPUs) to 32 nodes 

(256 GPUs)

0.007 0.021 0.054 0.061 0.058 0.062

0.617 0.62
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0.624 0.642

0.725 0.741 0.738 0.748

Scalability - 97.1% 86.9% 84.2% 84.5% 83.4%

point-to-point communication

Others
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Summary
• As an example of application combining equation-based and data-driven 

methods, we ported an implicit PDE solver with NN-based preconditioner
• Circumvents the problem of low accuracy in NN-based estimations by using NN in 

Green’s functions that reflect property of the PDE 
• Selected an appropriate algorithm and tuned it at the kernel level  

considering the characteristics of the GPU using OpenACC
• At the kernel level;

• EBE: 93.7x speedup from CPU, 93.0% of performance implemented by CUDA
• GF-based NN-predictor: 19.6x speedup from CPU, 85.5% of performance 

implemented by CUDA
• For whole solver;

• 158x speedup from conventional method on CPU, 38.9x speedup from proposed 
method on CPU, 64.4% of the FP64 peak

• 83.4% of weak scaling efficiency was obtained from 1 node (8 GPUs) to 32 nodes 
(256 GPUs) on ABCI A100 system

• Same approach expected to be effective in porting other HPC applications 
combining data-driven and equation-based methods with directive-based 
programming models
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