
Achieving near native runtime performance and
cross-platform performance portability for random
number generation through SYCL interoperability

November 14, 2021

Vincent R. Pascuzzi1 and Mehdi Goli2

1 Brookhaven National Laboratory (US)
2 Codeplay Software Ltd. (UK)

Particle physics deals with the fundamental
constituents of Nature and the forces through

which they interact

2

The Large Hadron Collider (LHC) is a
superconducting particle accelerator at the
European Organization for Nuclear Research,
designed to collide protons at a center-of-
mass energy of 14 TeV, at a rate of 4x106

times per second

3

Run-2/3 data rate ~10 PB.
Run-3/4 can expect ~1 EB.

The ATLAS detector is one of the general-
purpose experiments stationed along the LHC
ring, designed for particle physics research

• Further test the Standard Model (SM)
• Discover the Higgs boson (or something like it)
• Search for Supersymmetry and other beyond-

the-SM physics

4

Due to the LHC’s high instantaneous luminosity
(number of collisions per second per unit
area), tens of collisions occur every 25ns

• Filter out the ‘uninteresting’ collisions (events)
from typically one interesting event

• Transfer raw data off-detector
• Reconstruct events offline

5

To validate our measurements, and to ensure the
detector is functioning nominally, we need a lot of
simulated Monte Carlo events

• Full-scale detector description contains ~106

volumes
• Geant4-based simulations of particles traversing

the detector (particle material interactions,
kinematics, etc.) can take ~minutes for a _single_
simulated event

• Will become less manageable after high-luminosity
LHC (HL-LHC) upgrades are complete (~100s
simultaneous collisions)

6

To continue successful physics programs, it is
crucial ATLAS and other high-energy physics
experiments utilize heterogeneous resources!

7

• We cannot afford to support and maintain
multiple codebases.

• We need to utilize leadership computing
facilities.

• We need portability and achieve a fair level of
performance.

Caveat We are limited in developers (we are
physicists) and there are numerous
architectures and platforms.

8

National Energy Research Scientific Computing Center
(NERSC), 2021

AMD CPU, NVIDIA GPU

Oak Ridge National Laboratory (ORNL), 2021
AMD CPU, AMD GPU

Argonne National Laboratory (ANL), 2022
Intel CPU, Intel GPU

Lawrence Livermore National Laboratory (LLNL), 2023
AMD CPU, AMD GPU

Swiss National Supercomputing Center (CSCS), 2023
NVIDIA/ARM CPU, NVIDIA GPU

Riken Center for Computational Science, 2021
ARM CPU

HEP Center for
Computational
Excellence (CCE)

A Department of Energy High-Energy
Physics program investigating:

• Performance portability
• I/O
• Complex workflows
• Event generators*

Portable Parallelization Strategies (PPS)
effort focuses on performance and
portability solutions for current and future
HEP software

• Select among the participating
experiments a number of x86-based
‘testbeds’ and rewrite the codes in
various programming models

9

* Event generator software is written and maintained by theorists.

H
EP

-C
C

E
Ex

pe
rim

en
ts

“An application is performance portable if it achieves a consistent ratio of the actual time to solution to either
the best-known or the theoretical best time to solution on each platform with minimal platform specific code
required.” 1

10

Performance
portability

1 (definition of) Performance Portability, 2016 Department of Energy Center of Excellence Meeting.

Performance
• It runs: {Yes, No}
• It runs efficiently with respect to some baseline

Portability
• Can execute on multiple systems
• Adaptable to varying architectures and platforms

Productivity
• SLoC, maintainability, sustainability
• Port/migration/translation

Reproducibility
• For another day...

mailto:https://performanceportability.org/perfport/definition/

A C++-based open standard developed by
Khronos Group

• Cross-platform abstraction layer

Provides a single-source programming model for
development of heterogeneous systems

• Both low- and high-level codes

Vast ecosystem
• Numerous implementations, targeting different

platforms

Notable features
• Unified Shared Memory (USM)
• C++-like atomic operations
• Interoperability

11

SYCL
(pronounced ‘sickle’)

Khronos Group, SYCL 2020 (Web).

mailto:https://www.khronos.org/developers/linkto/sycl-2020-what-do-you-need-to-know

Developed using SYCL programming model
• Part of the oneAPI initiative

Linear algebra and random number generation
(RNG) functionality

• NETLIB LAPACK
• Intel oneMKL*

• cuBLAS

Community-driven
• Technical Advisory Board members provide

feedback to the overall oneAPI specification

12

oneMKL open-
source interfaces
library (OSI)

oneapi-src/oneMKL (Github).
* Note the difference between oneMKL OSI and Intel oneMKL.

mailto:https://github.com/oneapi-src/oneMKL

14

Integrating support
for {cu,hip}RAND

Did not have resources to develop a new RNG
• Instead, utilize existing highly-optimized

libraries

Required SYCL 2020 features, e.g.,
std::atomic_ref, interoperability, ...

• intel/llvm
• illuhad/hipSYCL

oneMKL OSI does not provide handle to support
resource allocation or kernel ordering

• Explicit synchronization between
streams/queues to ensure order

• Global vs. per-queue contexts

Host and device APIs
• oneMKL support for host (curand.h)

15

RNG algorithms
and kernels

oneMKL OSI implements Philox- and MRG-
based algorithms

• 36 common high-level generate function
templates (PImpl), 18 buffer and 18 USM

• Specify distribution and properties, and output
types

{cu,hip}RAND have no concept of range, and
distributions are coded into specific functions

• SYCL kernels written to address range
transformations

• Distribution template parameter used to call
correction native generate function

ICDF not supported by {cu}RAND
pseudorandom generators

• 20/36 generate functions supported in our
work

Benchmark
applications

1. Single artificial benchmark used to
stress hardware for different
backends

• Generates 1-108 random numbers
• Common code to ensure

consistent runtime behavior among
backends

2. Parameterized calorimeter
simulation software

• 190k ‘sensors’, ~10 MB geometry
• Inputs total ~GB, loaded at runtime
• Single-particle simulations require

102-107 random numbers per event

16

17

Performance
evaluation

Numerous definitions of performance portability
• Adopt from Pennycook et. al.1

Introduce application efficiency metric, VAVS
• Ratio between the time-to-solution (TTS) of

portable implementation to the native
• Useful for identifying runtime overheads

introduced by portability layers

Execute codes on a variety of machines with
various software stacks

• GNU compiler for ISO C++
• hipSYCL targeting AMD GPU
• intel/llvm (DPC++) targeting SYCL on x86 and

CUDA

1 Pennycook et. al. (2019) doi:10.1016/j.Future.2017.08.007.

mailto:https://doi.org/10.1016/j.future.2017.08.007

18

Results
RNG burner

Time-to-solution (TTS) using clocks shown for
three kernels: seed, generate and
transform

• SYCL oneMKL OSI buffer and USM APIs
• Native {cu,hip}RAND

Benchmark ran 100 iterations (none discarded)
for each batch size

Increased TTS of USM on A100 due to explicit
synchronization

Reduced TTS of SYCL on AMD platform
• Optimizations within hipRAND runtime system

for ROCm backend
• Callbacks introduce notable latencies in small

kernels
• Nearly callback-free hipSYCL runtime visible

for batch sizes < 107

A100-SXM4-40GB
Philox Uniform FP32

Radeon RX Vega 56
Philox Uniform FP32

19

Results
RNG burner

Per-kernel TTS and relative occupancy for A100
• Data collected using NVIDIA Nsight Compute

2020.2.1

Ten iterations for each backend/API
Both cuRAND kernels (seed and generate) are

identical between oneMKL OSI and native
Large increase in relative occupancy between

102 and 104 for cuRAND kernels
• SYCL runtime system optimizes required block

size and threads-per-block when not specified
• Native application fixed block size at 256 and

SYCL runtime chose 1024 (no performance
gains)

20

Results
FastCaloSim

Demonstrate performance portability using real-
world application (re-)written using SYCL
programming model

Ten ‘runs’ of single-electron and top quark pair
production simulations

• AMD CPU targeted using host_device
(TBB, no OpenCL backend)

• Intel CPU targeted using cpu_device
(OpenCL backend)

• ~80% TTS reduction for single electrons when
executed using GPU offload

• Top quark simulations achieve no gains on
GPUs due to lack of inter-event parallelism
and runtime data movement host → device
loading parameterizations

The same source runs across four different
platforms with fair performance

Electrons (10k events)
𝐸 = 65 GeV

0.20 < 𝜂 < 0.25

𝑡 ̅𝑡 (500 events)

21

Summary and
Conclusions

High-Energy Physics, and big data science in general, can no longer rely on CPU alone
• Long had single architecture, similar cluster-based resources

Pressure to demonstrate HPC utilization
• Cannot maintain multiple large codebases
• Need a performance portable solution

We investigate SYCL and interoperability with existing highly-optimized vendor libraries
• Achieve considerable performance across four major vendors, two of which are now supported by this work

Plenty of ideas for future work
• Heuristic methods for choosing optimal backend
• Purely SYCL-based math libraries (reproducibility)
• New applications and opportunities in quantum simulations

