
1

Accelerating quantum many-body
configuration interaction with
directives

WACCPD 2021

Brandon Cook (LBNL), Patrick J. Fasano (Notre
Dame), Pieter Maris (Iowa State), Chao Yang

(LBNL), Dossay Oryspayev (BNL)

2

In this talk
• Introduction to Many Fermion Dynamics (nuclear)

Configuration Interaction code
• NESAP, Perlmutter and goals for MFDn GPU porting effort
• Target platforms
• GPU acceleration of key kernels using directives

o Hierarchical counting nonzero matrix tiles and elements
o Conversion of counts to offsets
o Computing and storing nonzero matrix elements
o Calculation of physical observables (array reductions)

all code available at https://gitlab.com/NERSC/nersc-proxies/mfdn-kernels

https://gitlab.com/NERSC/nersc-proxies/mfdn-kernels

3

Many Fermion Dynamics - nuclear (MFDn)

• Configuration Interaction (CI) for nuclear structure
o Realistic nucleon-nucleon and three-nucleon forces

• Fortran 90
o platform independent
o hybrid MPI + OpenMP

• Production application with 10+ years of development
o historically targeting multicore CPU platforms such as Jaguar

(OLCF), Mira, Theta KNL (ALCF), Edison, Cori KNL (NERSC)
• Currently in use at multiple DOE centers

o add support for GPUs

4

• Enable efficient use of GPUs
• Retain portability

o multiple vendors of GPUs
o continue support for CPUs

• Productivity
o Total rewrite in e.g. C++ not feasible
o Avoid code duplication (as much as possible) or other changes

that impact maintainability
• Efficient use of memory

o Science drivers are to simulate largest problems possible
o Optimizations must not increase memory footprint

Optimization constraints

5

Target platforms
System Location CPU GPU
Cori NERSC Intel KNL none
Theta ALCF Intel KNL none
Perlmutter NERSC AMD Milan NVIDIA A100
Frontier* OLCF AMD AMD
Aurora* ALCF Intel Intel
NERSC-10* NERSC ? ?

* = long term goals

6

• Phase 1
o 1,536 nodes with 1 AMD “Milan” CPU + 4 NVIDIA A100 GPUs
o 256 GB CPU + 160 GB GPU memory per node

• NESAP application readiness program
o OpenACC was selected ~2 years ago at start of NESAP as

OpenMP support for this GPU was not mature

7

Test platforms
System Location CPU GPU
Cori GPU NERSC Intel Skylake NVIDIA V100
Cori DGX NERSC AMD Rome NVIDIA A100
Spock OLCF AMD Rome AMD MI100

System Compiler _OPENACC _OPENMP
Cori GPU NVIDIA HPCSDK 21.7 201711 (2.6) 202011 (5.1)
Cori DGX NVIDIA HPCSDK 21.7 201711 (2.6) 202011 (5.1)
Spock HPE CCE 12.0.1 201306 (2.0) 201511 (4.5)

8

MFDn structure

1. Determine sparsity
a. number and location of nonzero matrix tiles
b. number and location of nonzero elements in tiles

2. Calculate matrix elements
3. Compute N lowest eigenvalue/ eigenvector pairs [1]
4. Calculate physical observables from eigenvectors

[1] P. Maris et al. Accelerating an Iterative Eigensolver for Nuclear Structure
Configuration Interaction Calculations on GPUs using OpenACC
(arXiv:2109.00485)

9

Many-body state representations

• Many-body basis states are composed of
antisymmetrized products of Single Particle (SP) states

• Many-body states can be represented in two ways
o BIN(ϕ

i
) = ...0010010000...0001001..

• each bit corresponds to an SP state which is either occupied or not
• for n nucleons n bits are set
• memory proportional to number of SP states

o ϕ
i
 = {s

1
, s

2
,...s

n
}

• set of integers storing which SP states are occupied
• positive-definite and ordered
• memory proportional to number of nucleons

10

Sparsity determination

Two many-body states (with two-body forces) interact and
the matrix element is nonzero only if 0, 2, or 4 single particle
states are differently-occupied.

• bit representation only
• int representation only
• truncated bit representation + int representation

11

Hybrid bit + integer set representation
!$acc parallel loop

do i = 1, n

 c = 0

 !$acc loop reduction(+:c)

 do j = 1, n

 d = popcnt(ieor(bitrep1(i), bitrep2(j)))

 if (d > 4) cycle

 d = count_difference(mbstate1(:,i), np, mbstate2(:,j), np)

 if (d <= 4) c = c + 1

 end do

 counts(i) = c

end do
numnnz = sum(counts)

Level 1 directives
!$acc parallel loop

!$omp target teams distribute private(d)

!$omp target teams loop private(d)

!$omp target teams loop bind(teams) private(d)

Level 2 directives
!$acc loop reduction(+:c)

!$omp parallel do reduction(+:c) private(d)

!$omp loop reduction(+:c) private(d)

!$omp loop bind(parallel) reduction(+:c) private(d)

12

bit rep and hybrid non-zero counting performance

13

• Check the compiler diagnostic output!
o Even with “simple” loops

• Function/ subroutine calls in parallel loops should receive
extra attention
o You could end up running serial code on the GPU

• OpenACC loop achieved best performance
o OpenMP loop can be competitive with bind hints if the compiler

support is available
• OpenMP target teams distribute parallel do potentially

involves overhead compared to OpenMP loop

Takeaways

14

Prefix sum / scan

• Common primitive in many algorithms
• OpenMP spec includes a scan clause for reductions

o but no compiler supports it for offload!
• Available in C++ for specific platforms through many

means, e.g. Kokkos, libc++, Thrust, CUB
o mixing languages not acceptable for maintainability and

portability

15

Prefix sum in MFDn

• In MFDn needed to convert counts to offsets
o key transformation needed to use a single large shared

array vs many smaller private arrays
• Since the offsets can be computed once and

reused we just need to avoid a data transfer
o !$acc serial may be enough for some small

problems

16

Filling shared arrays
Two levels of parallelism

outer level
● enough work for CPUs
● no data conflicts

inner level
● order does not matter for correctness
● serial on CPUs for efficient cache use
● parallel on GPUs for parallelism

○ data conflicts -> use of atomics

!$acc parallel loop
do i = 1, n
 indx(i) = offset(i)
 !$acc loop device_type(host) seq
 do j = 1, m
 if (mod(j,p) == 0) then
 !$acc atomic capture
 indx(i) = indx(i) + 1
 k = indx(i)
 !$acc end atomic
 arr(k) = j
 end if
 end do
end do

17

Architectural specialization

• Even with no conflicts,
use of atomics on CPUs
introduces overhead

• OpenMP or OpenACC
only without additional
preprocessor?
o !$acc device_type
o !$omp metadirective

18

Architectural specialization: OpenACC

clauses after
device_type(<type>) only
apply to devices of <type>

but,
not available for !$acc atomic

!$acc parallel loop
do i = 1, n
 indx(i) = offset(i)
 !$acc loop device_type(host) seq
 do j = 1, m
 if (mod(j,p) == 0) then
 !$acc atomic capture
 indx(i) = indx(i) + 1
 k = indx(i)
 !$acc end atomic
 arr(k) = j
 end if
 end do
end do

19

Architectural specialization: OpenMP

!$omp metadirective when(target_device={kind(gpu)}: target teams distribute) &
!$omp& default(parallel do private(k))
do i = 1, n
 indx(i) = offset(i)
 !$omp metadirective when(device={kind(gpu)}: parallel do private(k))
 do j = 1, m
 if (mod(j,p) == 0) then
 !$omp begin metadirective when(device={kind(gpu)}: atomic capture)
 indx(i) = indx(i) + 1
 k = indx(i)
 !$omp end metadirective
 arr(k) = j
 end if
 end do
end do possible according to the

specification, but no compiler
support yet

20

• multi-architecture code with directives not currently
possible without some of:
o preprocessor
o runtime API calls
o code duplication

• !$omp metadirective is a promising solution, but
compiler support not yet available

• Future versions of OpenACC may also improve in this
area

Filling shared arrays - takeaways

21

Array reductions

• In MFDn requirement comes from computing expectation
value of operators corresponding to physically observable
quantities

• Support has been in specifications for some time
o but implementation in compilers has lagged (difficult to implement

generically with good performance)
• Initial support for OpenMP available in NVIDIA and HPE

compilers

22

3 implementations

array reduction atomic operations

!$acc parallel loop collapse(2)
reduction(+:a)
do i = 1, n
 do j = 1, n
 do k = 1, m
 a(k) = a(k) + x(k,i) * y(k,j)
 end do
 end do
end do

!$acc parallel loop collapse(3)
do i = 1, n
 do j = 1, n
 do k = 1, m
 !$acc atomic
 a(k) = a(k) + x(k,i) * y(k,j)
 !$acc end atomic
 end do
 end do
end do

23

code generation via fypp templates
for each array size required

#:def CSV(x,n)
${",".join(f"{x}{i}" for i in range(1, n+1))}$
#:enddef CSV

#:for num_elements in range(2, max_elements+1)
 subroutine reduction${num_elements}$(x, y, a, n, dt)
 integer, parameter :: m = ${num_elements}$
 integer, intent(in) :: n
 real(sp), dimension(m, n), intent(in) :: x, y
 real(sp), intent(out) :: a(m)
 integer :: i,j
 real(dp) :: t0
 real(dp), intent(out) :: dt
#:for i in range(1, num_elements+1)
 real(sp) :: a${i}$
#:endfor
 !$acc data present(x,y)
 t0 = wtime()
#:for i in range(1, num_elements+1)
 a${i}$ = a(${i}$)
#:endfor
 !$acc parallel loop collapse(2) &
 !$acc reduction(+:${CSV("a",num_elements}$)
 do i = 1, n
 do j = 1, n
#:for i in range(1, num_elements+1)
 a${i}$ = a${i}$ + x(${i}$,i) * y(${i}$,j)
#:endfor
 end do
 end do
 !$acc end parallel
#:for i in range(1, num_elements+1)
 a(${i}$) = a${i}$
#:endfor
 dt = wtime() - t0
 !$acc end data
 end subroutine reduction${num_elements}$
#:endfor

subroutine reduction3(x, y, a, n, dt)
 integer, parameter :: m = 3
 integer, intent(in) :: n
 real(sp), dimension(m, n), intent(in) :: x, y
 real(sp), intent(out) :: a(m)
 integer :: i,j
 real(dp) :: t0
 real(dp), intent(out) :: dt
 real(sp) :: a1
 real(sp) :: a2
 real(sp) :: a3
 !$acc data present(x,y)
 t0 = wtime()
 a1 = a(1)
 a2 = a(2)
 a3 = a(3)
 !$acc parallel loop collapse(2) &
 !$acc reduction(+:a1,a2,a3)
 do i = 1, n
 do j = 1, n
 a1 = a1 + x(1,i) * y(1,j)
 a2 = a2 + x(2,i) * y(2,j)
 a3 = a3 + x(3,i) * y(3,j)
 end do
 end do
 !$acc end parallel
 a(1) = a1
 a(2) = a2
 a(3) = a3
 dt = wtime() - t0
 !$acc end data
end subroutine reduction3

24

Performance on CPU (Skylake, nvfortran)

● array size 64
● atomics with many conflicts are very slow
● array reduction with OpenMP works well
● manual generation with OpenMP loop best

25

Performance on GPU (NVIDIA A100, nvfortran)

● array size 64
● atomics with many conflicts are best

○ in some cases
● array reduction with OpenMP works well

○ until you hit a bug with some array sizes
● manual generation with any model highest

peak performance

26

Performance on GPU (AMD MI100, HPE CCE)

● array size 64
● atomics are best in some ranges

○ but only with OpenMP-loop
● array reduction with OpenMP works

○ but slow, no parallel code
● manual generation with OpenMP and

OpenMP-loop works
○ OpenACC crashes the compiler

27

Array reductions takeaways
● atomics are best in some ranges on GPUs

○ with OpenMP and sensitive to directive choice
● array reduction with OpenMP “works”

○ but performance is not portable
● manual generation via templates with OpenMP-loop overall best

solution
○ but! adding a templating engine to your build may not be a

good idea: long compile times, maintenance, additional
dependency

28

Conclusions
● MFDn is now enabled for CPUs and GPUs
● multiple thread private arrays -> 1 big shared array with

offsets
○ Counts -> Offsets -> Fill

● For the kernels examined in this work OpenACC provides the
best performance

● OpenMP with support for latest features by compilers is
promising candidate for single source performance portability

29

Acknowledgements

This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department
of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

This work is supported by the U.S. Department of Energy (DOE) under Award Nos. DE-FG02-95ER40934 and
DE-SC0018223 (SciDAC/NUCLEI), and by the DOE Office of Science, Office of Workforce Development for Teachers and
Scientists, Office of Science Graduate Student Research (SCGSR) program (administered by the Oak Ridge Institute for
Science and Education (ORISE), managed by ORAU under contract number DE‐SC0014664).

