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In this talk
• Introduction to Many Fermion Dynamics (nuclear) 

Configuration Interaction code
• NESAP, Perlmutter and goals for MFDn GPU porting effort
• Target platforms
• GPU acceleration of key kernels using directives

o Hierarchical counting nonzero matrix tiles and elements
o Conversion of counts to offsets
o Computing and storing nonzero matrix elements
o Calculation of physical observables (array reductions)

all code available at https://gitlab.com/NERSC/nersc-proxies/mfdn-kernels 

https://gitlab.com/NERSC/nersc-proxies/mfdn-kernels
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Many Fermion Dynamics - nuclear (MFDn)

• Configuration Interaction (CI) for nuclear structure
o Realistic nucleon-nucleon and three-nucleon forces

• Fortran 90
o platform independent
o hybrid MPI + OpenMP

• Production application with 10+ years of development
o historically targeting multicore CPU platforms such as Jaguar 

(OLCF), Mira, Theta KNL (ALCF), Edison, Cori KNL (NERSC)
• Currently in use at multiple DOE centers

o add support for GPUs
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• Enable efficient use of GPUs
• Retain portability

o multiple vendors of GPUs
o continue support for CPUs

• Productivity
o Total rewrite in e.g. C++ not feasible
o Avoid code duplication (as much as possible) or other changes 

that impact maintainability
• Efficient use of memory

o Science drivers are to simulate largest problems possible
o Optimizations must not increase memory footprint

Optimization constraints
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Target platforms
System Location CPU GPU
Cori NERSC Intel KNL none
Theta ALCF Intel KNL none
Perlmutter NERSC AMD Milan NVIDIA A100
Frontier* OLCF AMD AMD
Aurora* ALCF Intel Intel
NERSC-10* NERSC ? ?

*  = long term goals
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• Phase 1
o 1,536 nodes with 1 AMD “Milan” CPU + 4 NVIDIA A100 GPUs
o 256 GB CPU + 160 GB GPU memory per node

• NESAP application readiness program
o OpenACC was selected ~2 years ago at start of NESAP as 

OpenMP support for this GPU was not mature
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Test platforms
System Location CPU GPU
Cori GPU NERSC Intel Skylake NVIDIA V100
Cori DGX NERSC AMD Rome NVIDIA A100
Spock OLCF AMD Rome AMD MI100

System Compiler _OPENACC _OPENMP
Cori GPU NVIDIA HPCSDK 21.7 201711 (2.6) 202011 (5.1)
Cori DGX NVIDIA HPCSDK 21.7 201711 (2.6) 202011 (5.1)
Spock HPE CCE 12.0.1 201306 (2.0) 201511 (4.5)
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MFDn structure

1. Determine sparsity
a. number and location of nonzero matrix tiles
b. number and location of nonzero elements in tiles

2. Calculate matrix elements
3. Compute N lowest eigenvalue/ eigenvector pairs [1]
4. Calculate physical observables from eigenvectors

[1]  P. Maris et al. Accelerating an Iterative Eigensolver for Nuclear Structure 
Configuration Interaction Calculations on GPUs using OpenACC 
(arXiv:2109.00485)
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Many-body state representations

• Many-body basis states are composed of 
antisymmetrized products of Single Particle (SP) states

• Many-body states can be represented in two ways
o BIN(ϕ

i
) = ...0010010000...0001001..

• each bit corresponds to an SP state which is either occupied or not
• for n nucleons n bits are set
• memory proportional to number of SP states

o ϕ
i
 = {s

1
, s

2
,...s

n
}

• set of integers storing which SP states are occupied
• positive-definite and ordered
• memory proportional to number of nucleons
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Sparsity determination

Two many-body states (with two-body forces) interact and 
the matrix element is nonzero only if 0, 2, or 4 single particle 
states are differently-occupied.

• bit representation only
• int representation only
• truncated bit representation + int representation
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Hybrid bit + integer set representation
!$acc parallel loop

do i = 1, n

   c = 0

   !$acc loop reduction(+:c)

   do j = 1, n

      d = popcnt(ieor(bitrep1(i), bitrep2(j)))

      if (d > 4) cycle

      d = count_difference(mbstate1(:,i), np, mbstate2(:,j), np)

      if (d <= 4) c = c + 1

   end do

   counts(i) = c

end do
numnnz = sum(counts)

Level 1 directives
!$acc parallel loop

!$omp target teams distribute private(d)

!$omp target teams loop private(d)

!$omp target teams loop bind(teams) private(d)

Level 2 directives
!$acc loop reduction(+:c)

!$omp parallel do reduction(+:c) private(d)

!$omp loop reduction(+:c) private(d)

!$omp loop bind(parallel) reduction(+:c) private(d)
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bit rep and hybrid non-zero counting performance
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• Check the compiler diagnostic output!
o Even with “simple” loops

• Function/ subroutine calls in parallel loops should receive 
extra attention
o You could end up running serial code on the GPU

• OpenACC loop achieved best performance
o OpenMP loop can be competitive with bind hints if the compiler 

support is available
• OpenMP target teams distribute parallel do potentially 

involves overhead compared to OpenMP loop

Takeaways
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Prefix sum / scan

• Common primitive in many algorithms
• OpenMP spec includes a scan clause for reductions

o but no compiler supports it for offload!
• Available in C++ for specific platforms through many 

means, e.g. Kokkos, libc++, Thrust, CUB
o mixing languages not acceptable for maintainability and 

portability
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Prefix sum in MFDn

• In MFDn needed to convert counts to offsets
o key transformation needed to use a single large shared 

array vs many smaller private arrays
• Since the offsets can be computed once and 

reused we just need to avoid a data transfer
o !$acc serial may be enough for some small 

problems
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Filling shared arrays
Two levels of parallelism

outer level
● enough work for CPUs
● no data conflicts

inner level
● order does not matter for correctness
● serial on CPUs for efficient cache use
● parallel on GPUs for parallelism

○ data conflicts -> use of atomics

!$acc parallel loop
do i = 1, n
   indx(i) = offset(i)
   !$acc loop device_type(host) seq
   do j = 1, m
      if (mod(j,p) == 0) then
         !$acc atomic capture
         indx(i) = indx(i) + 1
         k = indx(i)
         !$acc end atomic
         arr(k) = j
      end if
   end do
end do
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Architectural specialization

• Even with no conflicts, 
use of atomics on CPUs 
introduces overhead

• OpenMP or OpenACC 
only without additional 
preprocessor?
o !$acc device_type
o !$omp metadirective
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Architectural specialization: OpenACC

clauses after 
device_type(<type>) only 
apply to devices of <type> 

but,
not available for !$acc atomic

!$acc parallel loop
do i = 1, n
   indx(i) = offset(i)
   !$acc loop device_type(host) seq
   do j = 1, m
      if (mod(j,p) == 0) then
         !$acc atomic capture
         indx(i) = indx(i) + 1
         k = indx(i)
         !$acc end atomic
         arr(k) = j
      end if
   end do
end do
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Architectural specialization: OpenMP

!$omp metadirective when(target_device={kind(gpu)}: target teams distribute) &
!$omp& default(parallel do private(k))
do i = 1, n
   indx(i) = offset(i)
   !$omp metadirective when(device={kind(gpu)}: parallel do private(k))
   do j = 1, m
      if (mod(j,p) == 0) then
         !$omp begin metadirective when(device={kind(gpu)}: atomic capture)
         indx(i) = indx(i) + 1
         k = indx(i)
         !$omp end metadirective
         arr(k) = j
      end if
   end do
end do possible according to the 

specification, but no compiler 
support yet
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• multi-architecture code with directives not currently 
possible without some of:
o preprocessor
o runtime API calls
o code duplication

• !$omp metadirective is a promising solution, but 
compiler support not yet available

• Future versions of OpenACC may also improve in this 
area

Filling shared arrays - takeaways
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Array reductions

• In MFDn requirement comes from computing expectation 
value of operators corresponding to physically observable 
quantities

• Support has been in specifications for some time
o but implementation in compilers has lagged (difficult to implement 

generically with good performance)
• Initial support for OpenMP available in NVIDIA and HPE 

compilers
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3 implementations

array reduction atomic operations

!$acc parallel loop collapse(2) 
reduction(+:a)
do i = 1, n
   do j = 1, n
      do k = 1, m
         a(k) = a(k) + x(k,i) * y(k,j)
      end do
   end do
end do

!$acc parallel loop collapse(3)
do i = 1, n
   do j = 1, n
      do k = 1, m
         !$acc atomic
         a(k) = a(k) + x(k,i) * y(k,j)
         !$acc end atomic
      end do
   end do
end do
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code generation via fypp templates 
for each array size required

#:def CSV(x,n)
${",".join(f"{x}{i}" for i in range(1, n+1))}$
#:enddef CSV

#:for num_elements in range(2, max_elements+1)
  subroutine reduction${num_elements}$(x, y, a, n, dt)
    integer, parameter :: m = ${num_elements}$
    integer, intent(in) :: n
    real(sp), dimension(m, n), intent(in) :: x, y
    real(sp), intent(out) :: a(m)
    integer :: i,j
    real(dp) :: t0
    real(dp), intent(out) :: dt
#:for i in range(1, num_elements+1)
    real(sp) :: a${i}$
#:endfor
    !$acc data present(x,y)
    t0 = wtime()
#:for i in range(1, num_elements+1)
    a${i}$ = a(${i}$)
#:endfor
    !$acc parallel loop collapse(2) &
    !$acc reduction(+:${CSV("a",num_elements}$)
    do i = 1, n
       do j = 1, n
#:for i in range(1, num_elements+1)
          a${i}$ = a${i}$ + x(${i}$,i) * y(${i}$,j)
#:endfor
       end do
    end do
    !$acc end parallel
#:for i in range(1, num_elements+1)
    a(${i}$) = a${i}$
#:endfor
    dt = wtime() - t0
    !$acc end data
  end subroutine reduction${num_elements}$
#:endfor

subroutine reduction3(x, y, a, n, dt)
  integer, parameter :: m = 3
  integer, intent(in) :: n
  real(sp), dimension(m, n), intent(in) :: x, y
  real(sp), intent(out) :: a(m)
  integer :: i,j
  real(dp) :: t0
  real(dp), intent(out) :: dt
  real(sp) :: a1
  real(sp) :: a2
  real(sp) :: a3
  !$acc data present(x,y)
  t0 = wtime()
  a1 = a(1)
  a2 = a(2)
  a3 = a(3)
  !$acc parallel loop collapse(2) &
  !$acc reduction(+:a1,a2,a3)
  do i = 1, n
     do j = 1, n
        a1 = a1 + x(1,i) * y(1,j)
        a2 = a2 + x(2,i) * y(2,j)
        a3 = a3 + x(3,i) * y(3,j)
     end do
  end do
  !$acc end parallel
  a(1) = a1
  a(2) = a2
  a(3) = a3
  dt = wtime() - t0
  !$acc end data
end subroutine reduction3
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Performance on CPU (Skylake, nvfortran)

● array size 64
● atomics with many conflicts are very slow
● array reduction with OpenMP works well
● manual generation with OpenMP loop best
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Performance on GPU (NVIDIA A100, nvfortran)

● array size 64
● atomics with many conflicts are best

○ in some cases
● array reduction with OpenMP works well

○ until you hit a bug with some array sizes
● manual generation with any model highest 

peak performance
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Performance on GPU (AMD MI100, HPE CCE)

● array size 64
● atomics are best in some ranges

○ but only with OpenMP-loop
● array reduction with OpenMP works

○ but slow, no parallel code
● manual generation with OpenMP and 

OpenMP-loop works
○ OpenACC crashes the compiler
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Array reductions takeaways
● atomics are best in some ranges on GPUs

○ with OpenMP and sensitive to directive choice
● array reduction with OpenMP “works”

○ but performance is not portable
● manual generation via templates with OpenMP-loop overall best 

solution
○ but! adding a templating engine to your build may not be a 

good idea: long compile times, maintenance, additional 
dependency
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Conclusions
● MFDn is now enabled for CPUs and GPUs
● multiple thread private arrays -> 1 big shared array with 

offsets
○ Counts -> Offsets -> Fill

● For the kernels examined in this work OpenACC provides the 
best performance

● OpenMP with support for latest features by compilers is  
promising candidate for single source performance portability
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