
Challenges Porting a C++ Template-Metaprogramming
Abstraction Layer to Directive-based Offloading

Porting PIConGPU to OpenMP target and OpenACC

Jeffrey Kelling1, Sergei Bastrakov2, Alexander Debus2, Thomas Kluge2, Matt Leinhauser3,4,
Richard Pausch2, Klaus Steiniger2, Jan Stephan4, René Widera2, Jeff Young5,

Michael Bussmann4, Sunita Chandrasekaran3, Guido Juckeland1

1Department of Information Services and Computing, Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
mailto:j.kelling@hzdr.de, https://www.hzdr.de

2Insitute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
3Deptartment of CIS, University of Delaware

4Center for Advance Systems Understanding (CASUS)
5Georgia Tech, School of Computer Science

October 15, 2021

Member of the Helmholtz AssociationPage 1
GTC 2020 | San Jose, California, United States | March 22 - 26, 2020 | Dr. Alexander Debus

github.com/ComputationalRadiationPhysics/picongpu

picongpu.readthedocs.io

Open source, fully relativistic, 3D3V, manycore, performance portable
PIC code with a single code base for relativistic plasma physics

Implements various numerical schemes, e.g.:
> Villasenor-Buneman, Esirkepov and ZigZag current deposition
> NGP (0th) to P4S (4th) macro particle shape orders
> Boris and Vay particle pusher
> Yee, Lehe and AO-FDTD field solver

Available self-consistent additions to the PIC cycle, e.g.:
> QED synchrotron radiation and Bremsstrahlung (photon emission)
> Thomas-Fermi collisional ionization
> ADK and BSI field ionization
> In-situ calculation of coherent and incoherent far field radiation
> Classical radiation reaction

Tools and diagnostics, e.g.:
> Extensible selection of plugins for online analysis of particle and field data
> Scalable I/O for restarts and full output in openPMD
 using parallel HDF5 and ADIOS2

2/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

3/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Weak Scaling FOM Case on Summit

PICon GPU is a Frontier CAAR code.

FOM run experimental setup:
№ Iterations: 1000
Runtime: ∼ 10 min
∼ 0.6 s per iteration
FOM Science case
Scaling:

27 → 4600 nodes
162 → 27 600 GPUs
96–98 % GPU utilization

4/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

PIConGPU Full Software Stack

Huebl, Axel, et al. (2018) Zero Overhead Modern C++ for Mapping to Any Programming Model.
Software Stack updated by René Widera (2020)

https://zenodo.org/record/1304272#.X0_GRy2ZPRY

5/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

1 Abstraction Layers and Accelerated Computing in C++

2 OpenACC and OpenMP target

3 Porting Alpaka

4 Issues and Results

5 Outlook

6/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Offloading Models

Vendor Specific, low-level: CUDA, HIP, ...
Open, low-level: OpenCL, SYCL, ...
Open, directive-based: OpenMP target, OpenACC

7/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Abstraction Layers in C++

RAJA
Kokkos

Why?

Dilemma of choice:
Which API to use?
Which will be supported throughout the lifetime of the code?

A future hardware architechture may come with a new programming model...
⇒ Important to keep large applications independent of offloading API

Dependence on abstraction layer less problematic:
comparatively lightweight, can be maintained by primary application’s team

7/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Abstraction Layers in C++

RAJA
Kokkos

Why?

Dilemma of choice:
Which API to use?
Which will be supported throughout the lifetime of the code?

A future hardware architechture may come with a new programming model...
⇒ Important to keep large applications independent of offloading API

Dependence on abstraction layer less problematic:
comparatively lightweight, can be maintained by primary application’s team

7/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Abstraction Layers in C++

RAJA
Kokkos

Why?

Dilemma of choice:
Which API to use?
Which will be supported throughout the lifetime of the code?

A future hardware architechture may come with a new programming model...

⇒ Important to keep large applications independent of offloading API
Dependence on abstraction layer less problematic:
comparatively lightweight, can be maintained by primary application’s team

7/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Abstraction Layers in C++

RAJA
Kokkos

Why?

Dilemma of choice:
Which API to use?
Which will be supported throughout the lifetime of the code?

A future hardware architechture may come with a new programming model...
⇒ Important to keep large applications independent of offloading API

Dependence on abstraction layer less problematic:
comparatively lightweight, can be maintained by primary application’s team

8/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

OpenMP target and OpenACC

OpenMP target
Extension of OpenMP for accelerator
offloading
Added in verison 4.0
Aims to provide fine-grained control
Explicit parallelism

#pragma omp target

OpenACC
Newly developed parallel model specifically for
accelerators
Aims to be descriptive rather than prescriptive
Intentionally only pure data parallelism on
device

#pragma acc parallel

8/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

OpenMP target and OpenACC

OpenMP target
Extension of OpenMP for accelerator
offloading
Added in verison 4.0
Aims to provide fine-grained control
Explicit parallelism

#pragma omp target

OpenACC
Newly developed parallel model specifically for
accelerators
Aims to be descriptive rather than prescriptive
Intentionally only pure data parallelism on
device

#pragma acc parallel

9/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Accelerator Execution Hierarchy

CUDA Alpaka OpenMP 5.0 OpenACC 3.0 execution
grid grid (target) (parallel) task
block block team gang undefined
thread thread thread worker lock-step
— element simd (vector) vector/seq.

9/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Accelerator Execution Hierarchy

CUDA Alpaka OpenMP 5.0 OpenACC 3.0 execution
grid grid (target) (parallel) task
block block team gang undefined
thread thread thread worker undefined
— element simd (vector) vector/seq.

10/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Header-only C++14 abstraction library for accelerator development
Accelerator type passed to device kernels as backend handle

1 template<typename TAcc>
2 void kernel(const TAcc& acc, ...);

⇒ no conditional compilation required for backend selection

API and feature set modelled after CUDA
host devices, queues, events, memory management, ...

device atomics, block-shared memory, block-sync, ...
lib math, random, ...

supported backends include:
sequential, OpenMP, TBB, CUDA, HIP, ...

10/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Header-only C++14 abstraction library for accelerator development
Accelerator type passed to device kernels as backend handle

1 template<typename TAcc>
2 void kernel(const TAcc& acc, ...);

⇒ no conditional compilation required for backend selection
API and feature set modelled after CUDA
host devices, queues, events, memory management, ...

device atomics, block-shared memory, block-sync, ...
lib math, random, ...

supported backends include:
sequential, OpenMP, TBB, CUDA, HIP, ...

11/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

: Queues and Tasks

Compute and memory task objects are placed in queues executing in order

1 template<class Functor, class... Args>
2 struct TaskKernel
3 {
4 TaskKernel(
5 WorkDiv workDiv, // grid size
6 Functor functor, // user functor
7 Args ...args); // user arguments
8

9 void operator() (const DevType& dev) const;
10

11 private:
12 WorkDiv m_workDiv;
13 Functor m_functor;
14 tuple< decay_t<Args...> > m_args;
15 };

11/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

: Queues and Tasks

Compute and memory task objects are placed in queues executing in order
1 template<class Functor, class... Args>
2 struct TaskKernel
3 {
4 TaskKernel(
5 WorkDiv workDiv, // grid size
6 Functor functor, // user functor
7 Args ...args); // user arguments
8

9 void operator() (const DevType& dev) const;
10

11 private:
12 WorkDiv m_workDiv;
13 Functor m_functor;
14 tuple< decay_t<Args...> > m_args;
15 };

12/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

: Kernel

OpenMP target
1 // TaskKernel_Omp5::operator() (...) {
2 // copy members to local scope, e.g.:
3 auto args = m_args;
4 omp_set_num_threads(workdiv.threads);
5 # pragma omp target
6 {
7 # pragma omp teams distribute
8 for (int b = 0; b < workDiv.blocks; ++b)
9 {

10 // OpenMP backend handle:
11 AccOmp5 ctx (workdiv, b);
12 # pragma omp parallel
13

14 {
15

16 apply([&ctx](auto ...args){
17 functor (ctx, args...);
18 }, margs);
19 } } }

OpenACC
1 // TaskKernel_Oacc::operator() (...) {
2 // copy members to local scope, e.g.:
3 auto args = m_args;
4

5 # pragma acc parallel
6 {
7 # pragma acc loop gang
8 for (int b = 0; b < workDiv.blocks; ++b)
9 {

10 // OpenACC block context:
11 CtxBlockOacc ctxBlock (workdiv, b);
12 # pragma acc loop worker
13 for (int t = 0; t < workdiv.threads; ++t)
14 {
15 AccOacc ctx (ctxBlock, t);
16 apply([&ctx](auto ...args){
17 functor (ctx, args...);
18 }, margs);
19 } } }

12/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

: Kernel

OpenMP target
1 // TaskKernel_Omp5::operator() (...) {
2 // copy members to local scope, e.g.:
3 auto args = m_args;
4 omp_set_num_threads(workdiv.threads);
5 # pragma omp target
6 {
7 # pragma omp teams distribute
8 for (int b = 0; b < workDiv.blocks; ++b)
9 {

10 // OpenMP backend handle:
11 AccOmp5 ctx (workdiv, b);
12 # pragma omp parallel
13

14 {
15

16 apply([&ctx](auto ...args){
17 functor (ctx, args...);
18 }, margs);
19 } } }

OpenACC
1 // TaskKernel_Oacc::operator() (...) {
2 // copy members to local scope, e.g.:
3 auto args = m_args;
4

5 # pragma acc parallel
6 {
7 # pragma acc loop gang
8 for (int b = 0; b < workDiv.blocks; ++b)
9 {

10 // OpenACC block context:
11 CtxBlockOacc ctxBlock (workdiv, b);
12 # pragma acc loop worker
13 for (int t = 0; t < workdiv.threads; ++t)
14 {
15 AccOacc ctx (ctxBlock, t);
16 apply([&ctx](auto ...args){
17 functor (ctx, args...);
18 }, margs);
19 } } }

13/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

: Kernel Environment
OpenMP target OpenACC

Block-thread index
1 template<>
2 class GetThreadIdx< AccOmp5 > {
3 size_t get (const AccOmp5&) {
4 return omp_get_thread_num();
5 }
6 };

1 template<>
2 class GetThreadIdx< AccOacc > {
3 size_t get (const AccOacc& ctx) {
4 return ctx.m_threadIdx;
5 }
6 };

Block-level barrier
1 template<>
2 class SyncBlockThreads< AccOmp5 > {
3 void sync (const AccOmp5&) {
4 # pragma omp barrier
5 } };

1 template<>
2 class SyncBlockThreads< AccOacc > {
3 void sync (const AccOacc& acc) {
4 // atomics and spin waits
5 } };

Block-shared memory
block context contains small-object allocator (∼ 30 kB buffer, configurable)

13/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

: Kernel Environment
OpenMP target OpenACC

Block-thread index
1 template<>
2 class GetThreadIdx< AccOmp5 > {
3 size_t get (const AccOmp5&) {
4 return omp_get_thread_num();
5 }
6 };

1 template<>
2 class GetThreadIdx< AccOacc > {
3 size_t get (const AccOacc& ctx) {
4 return ctx.m_threadIdx;
5 }
6 };

Block-level barrier
1 template<>
2 class SyncBlockThreads< AccOmp5 > {
3 void sync (const AccOmp5&) {
4 # pragma omp barrier
5 } };

1 template<>
2 class SyncBlockThreads< AccOacc > {
3 void sync (const AccOacc& acc) {
4 // atomics and spin waits
5 } };

Block-shared memory
block context contains small-object allocator (∼ 30 kB buffer, configurable)

13/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

: Kernel Environment
OpenMP target OpenACC

Block-thread index
1 template<>
2 class GetThreadIdx< AccOmp5 > {
3 size_t get (const AccOmp5&) {
4 return omp_get_thread_num();
5 }
6 };

1 template<>
2 class GetThreadIdx< AccOacc > {
3 size_t get (const AccOacc& ctx) {
4 return ctx.m_threadIdx;
5 }
6 };

Block-level barrier
1 template<>
2 class SyncBlockThreads< AccOmp5 > {
3 void sync (const AccOmp5&) {
4 # pragma omp barrier
5 } };

1 template<>
2 class SyncBlockThreads< AccOacc > {
3 void sync (const AccOacc& acc) {
4 // atomics and spin waits
5 } };

Block-shared memory
block context contains small-object allocator (∼ 30 kB buffer, configurable)

14/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

: Memory

Device (and host) memory are managed via RAII buffer API
Explicit operations of buffer creation and copy
No linking between host and device memory ⇒ no use for data directives

Alpaka CUDA OpenMP 5.0 OpenACC 3.0
alpaka::allocBuf cudaMalloc omp_target_alloc acc_malloc

alpaka::memcpy cudaMemcpy omp_target_memcpy acc_memcpy_to_device
acc_memcpy_from_device
acc_memcpy_device

~Buf cudaFree omp_target_free acc_free

Alpaka buffers are not passed to the device, native pointers are
⇒ Kernel arguments usually contain device pointers, which cannot be declared as such.

omp is_device_ptr (NAME) respectively acc deviceptr (NAME) cannot be used.

15/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

PICon GPU : Globals and Constants

Alpaka does not provide and abstraction for global variables.
PIConGPU uses one global variable, requiring directives in the code:

1 uint64_t nextId;
2 # pragma acc declare device_resident(nextId)
3 # pragma omp declare target(nextId)

PIConGPU’s simulation definition is fixed at compile time using constexpr.
If a constant needs an address at run-time it must be explicitly mapped to the device
e.g. for runtime-indexed array, object of which a non-static member function is called in device code

1 constexpr uint64_t constant[] = { 1, 2 }
2 # pragma acc declare copyin(constant)
3 # pragma omp declare target(constant)

15/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

PICon GPU : Globals and Constants

Alpaka does not provide and abstraction for global variables.
PIConGPU uses one global variable, requiring directives in the code:

1 uint64_t nextId;
2 # pragma acc declare device_resident(nextId)
3 # pragma omp declare target(nextId)

PIConGPU’s simulation definition is fixed at compile time using constexpr.
If a constant needs an address at run-time it must be explicitly mapped to the device
e.g. for runtime-indexed array, object of which a non-static member function is called in device code

1 constexpr uint64_t constant[] = { 1, 2 }
2 # pragma acc declare copyin(constant)
3 # pragma omp declare target(constant)

16/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Issues in Standards

types containing static constexpr data members were not mappable
(OpenMP target (< 5.0))

probably result of a ban on static with no regard to const in C++

mapping of constexpr variables with static lifetime (compile-time constants) not implicit
(OpenMP target / OpenACC)

compiler knows which constants are used and there is no abiguity about sequence of copy ⇒ should
be implicit

missing gang-level barrier
(OpenACC)

a barrier would not agree with pure data-parallel philosophy
no explicit control over number of workers ⇒ makeshift barrier can dead-lock or not work

std::tuple implementations are not required to be trivially copyable if all component
types are
(C++)

⇒ no std::tuple is formally mappable

16/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Issues in Standards

types containing static constexpr data members were not mappable
(OpenMP target (< 5.0))

probably result of a ban on static with no regard to const in C++
mapping of constexpr variables with static lifetime (compile-time constants) not implicit
(OpenMP target / OpenACC)

compiler knows which constants are used and there is no abiguity about sequence of copy ⇒ should
be implicit

missing gang-level barrier
(OpenACC)

a barrier would not agree with pure data-parallel philosophy
no explicit control over number of workers ⇒ makeshift barrier can dead-lock or not work

std::tuple implementations are not required to be trivially copyable if all component
types are
(C++)

⇒ no std::tuple is formally mappable

16/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Issues in Standards

types containing static constexpr data members were not mappable
(OpenMP target (< 5.0))

probably result of a ban on static with no regard to const in C++
mapping of constexpr variables with static lifetime (compile-time constants) not implicit
(OpenMP target / OpenACC)

compiler knows which constants are used and there is no abiguity about sequence of copy ⇒ should
be implicit

missing gang-level barrier
(OpenACC)

a barrier would not agree with pure data-parallel philosophy
no explicit control over number of workers ⇒ makeshift barrier can dead-lock or not work

std::tuple implementations are not required to be trivially copyable if all component
types are
(C++)

⇒ no std::tuple is formally mappable

16/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Issues in Standards

types containing static constexpr data members were not mappable
(OpenMP target (< 5.0))

probably result of a ban on static with no regard to const in C++
mapping of constexpr variables with static lifetime (compile-time constants) not implicit
(OpenMP target / OpenACC)

compiler knows which constants are used and there is no abiguity about sequence of copy ⇒ should
be implicit

missing gang-level barrier
(OpenACC)

a barrier would not agree with pure data-parallel philosophy
no explicit control over number of workers ⇒ makeshift barrier can dead-lock or not work

std::tuple implementations are not required to be trivially copyable if all component
types are
(C++)

⇒ no std::tuple is formally mappable

17/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Tested Compilers

OpenMP target OpenACC
target: x86 hsa nvptx x86 nvptx
GCC ≥ 9 � �

Clang ≥ 10 � � �

AOMP ≈ 0.7 � �

ROC Clang = 4.3.0 �

IBM XL = 16.1.1-5 �

NVHPC ≥ 19.3 � �

All listed compilers showed major roadblocks in initial tests.
Followed only updates of two compilers with fastest development speed:

Clang (git main) for OpenMP target
NVHPC (releases) for OpenACC

18/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Compiler Issues I

Main complication turned out to be a lack of tested compiler support:
OpenMP 5.0 / OpenACC 3.0 not fully supported anywhere. E.g:

GCC types with static constexpr not mappable (very strict interpretation of OpenMP 4.5)
⇒ porting PIConGPU impossible

Internal Compiler Errors (ICE) happen when directives meet C++
Invalid use or not-implemented features can trigger ICE instead of compiler error
Runtime errors, like incorrect data sharing, atomics not doing what they should

18/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Compiler Issues I

Main complication turned out to be a lack of tested compiler support:
OpenMP 5.0 / OpenACC 3.0 not fully supported anywhere. E.g:

GCC types with static constexpr not mappable (very strict interpretation of OpenMP 4.5)
⇒ porting PIConGPU impossible

Internal Compiler Errors (ICE) happen when directives meet C++

Invalid use or not-implemented features can trigger ICE instead of compiler error
Runtime errors, like incorrect data sharing, atomics not doing what they should

18/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Compiler Issues I

Main complication turned out to be a lack of tested compiler support:
OpenMP 5.0 / OpenACC 3.0 not fully supported anywhere. E.g:

GCC types with static constexpr not mappable (very strict interpretation of OpenMP 4.5)
⇒ porting PIConGPU impossible

Internal Compiler Errors (ICE) happen when directives meet C++
Invalid use or not-implemented features can trigger ICE instead of compiler error

Runtime errors, like incorrect data sharing, atomics not doing what they should

18/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Compiler Issues I

Main complication turned out to be a lack of tested compiler support:
OpenMP 5.0 / OpenACC 3.0 not fully supported anywhere. E.g:

GCC types with static constexpr not mappable (very strict interpretation of OpenMP 4.5)
⇒ porting PIConGPU impossible

Internal Compiler Errors (ICE) happen when directives meet C++
Invalid use or not-implemented features can trigger ICE instead of compiler error
Runtime errors, like incorrect data sharing, atomics not doing what they should

19/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Compiler Issues II

Focussed main development and testing on Alpaka’s test suite and examples, rather than
PIConGPU

⇐ Smaller applications with limited scope may not get stuck on the same bugs

When code compiles but does not work due to compiler bug correctness of code must be shown—
hard when no second compiler compiles the code

⇒ Sometimes needed compiler developers to run our complete code through their compiler to debug
issues without small reproducer
Alternative workflow with new compiler release:

compile codes
→ check if old bugs/ICEs are fixed
→ note and try to report next bugs/ICEs
→ wait for next release

19/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Compiler Issues II

Focussed main development and testing on Alpaka’s test suite and examples, rather than
PIConGPU

⇐ Smaller applications with limited scope may not get stuck on the same bugs
When code compiles but does not work due to compiler bug correctness of code must be shown—
hard when no second compiler compiles the code

⇒ Sometimes needed compiler developers to run our complete code through their compiler to debug
issues without small reproducer
Alternative workflow with new compiler release:

compile codes
→ check if old bugs/ICEs are fixed
→ note and try to report next bugs/ICEs
→ wait for next release

19/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Compiler Issues II

Focussed main development and testing on Alpaka’s test suite and examples, rather than
PIConGPU

⇐ Smaller applications with limited scope may not get stuck on the same bugs
When code compiles but does not work due to compiler bug correctness of code must be shown—
hard when no second compiler compiles the code

⇒ Sometimes needed compiler developers to run our complete code through their compiler to debug
issues without small reproducer

Alternative workflow with new compiler release:
compile codes

→ check if old bugs/ICEs are fixed
→ note and try to report next bugs/ICEs
→ wait for next release

20/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Results: VectorAdd
1 auto bufHostA(alpaka::allocBuf<uint32_t, Idx>(devHost, extent)); //... bufHostB(...), bufHostC(...);
2 // init bufHost* ...
3 auto bufAccA(alpaka::allocBuf<uint32_t, Idx>(devAcc, extent)); //... bufAccB(...), bufAccC(...);
4 alpaka::memcpy(queue, bufAccA, bufHostA, extent); // ...
5

6 auto const taskKernel = alpaka::createTaskKernel<Acc>(workDiv,
7 [](const auto& acc, const uint32_t* A, const uint32_t* B, uint32_t* C, size_t N){
8 //...
9 for(TIdx i(threadFirstElemIdx); i < threadLastElemIdxClipped; ++i)

10 C[i] = A[i] + B[i];
11 }, alpaka::getPtrNative(bufAccA), alpaka::getPtrNative(bufAccB), alpaka::getPtrNative(bufAccC), N);
12

13 alpaka::enqueue(queue, taskKernel);
14 alpaka::memcpy(queue, bufHostC, bufAccC, extent);
15 alpaka::wait(queue); // check result against host computation

Clang Main ROC Clang NVHPC 21.7
x86 hsa hsa x86 nvptx

compile X X X X X

run X memory error X X X

20/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Results: VectorAdd
1 auto bufHostA(alpaka::allocBuf<uint32_t, Idx>(devHost, extent)); //... bufHostB(...), bufHostC(...);
2 // init bufHost* ...
3 auto bufAccA(alpaka::allocBuf<uint32_t, Idx>(devAcc, extent)); //... bufAccB(...), bufAccC(...);
4 alpaka::memcpy(queue, bufAccA, bufHostA, extent); // ...
5

6 auto const taskKernel = alpaka::createTaskKernel<Acc>(workDiv,
7 [](const auto& acc, const uint32_t* A, const uint32_t* B, uint32_t* C, size_t N){
8 //...
9 for(TIdx i(threadFirstElemIdx); i < threadLastElemIdxClipped; ++i)

10 C[i] = A[i] + B[i];
11 }, alpaka::getPtrNative(bufAccA), alpaka::getPtrNative(bufAccB), alpaka::getPtrNative(bufAccC), N);
12

13 alpaka::enqueue(queue, taskKernel);
14 alpaka::memcpy(queue, bufHostC, bufAccC, extent);
15 alpaka::wait(queue); // check result against host computation

Clang Main ROC Clang NVHPC 21.7
x86 hsa hsa x86 nvptx

compile X X X X X

run X memory error X X X

21/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Results: Test Suite

Suite of tests also used in alpaka’s CI
Battery of test cases for each aspect of a backend: kernels, memory, atomics, ...
Using Catch2 ⇒ more TMP, harder for compilers to succeed.

Clang Main ROC Clang NVHPC 21.7 GCC 11
x86 hsa hsa x86 nvptx x86

compile X most slow, linker hangs X X1 most
run X memory error X X 7

1only local installation, nvlink error : Duplicate weak parameter bank for ... when using NVIDIA docker image in CI

https://github.com/catchorg/Catch2

21/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Results: Test Suite

Suite of tests also used in alpaka’s CI
Battery of test cases for each aspect of a backend: kernels, memory, atomics, ...
Using Catch2 ⇒ more TMP, harder for compilers to succeed.

Clang Main ROC Clang NVHPC 21.7 GCC 11
x86 hsa hsa x86 nvptx x86

compile X most slow, linker hangs X X1 most
run X memory error X X 7

1only local installation, nvlink error : Duplicate weak parameter bank for ... when using NVIDIA docker image in CI

https://github.com/catchorg/Catch2

22/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Results: PICon GPU

Clang Main NVHPC 21.7
x86 x86 nvptx

compile X X X

run X X 7

23/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Outlook

OpenMP target and OpenACC compiler ecosystems still rather unstable when it comes to C++
OpenACC is too strict about data parallelism to port existing codes which do not adhere to this
pattern

Our OpenMP target and OpenACC backends are, to our knowledge, complete, though we
cannot actually test and debug them completely
Will follow and try to push future compiler development

23/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Outlook

OpenMP target and OpenACC compiler ecosystems still rather unstable when it comes to C++
OpenACC is too strict about data parallelism to port existing codes which do not adhere to this
pattern

Our OpenMP target and OpenACC backends are, to our knowledge, complete, though we
cannot actually test and debug them completely
Will follow and try to push future compiler development

24/24 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Acknowledgments

Mathew Colgrove (NVIDIA) and NVHPC for helping to debug compiler and code issues
Ron Liberman (AMD) and SPEC High Performance group for advice and testing PIConGPU

Thank You.

1/2 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

OpenMP target and OpenACC: Directives

OpenMP target OpenACC
execution omp target acc parallel

omp teams distribute acc loop gang

omp parallel for acc loop worker

memory omp target data map (...) acc data copy...

omp declare target (...) acc declare (...)

atomics omp atomic acc atomic

lock omp critical —
sync threads omp barrier —

1/2 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

OpenMP target and OpenACC: Directives

OpenMP target OpenACC
execution omp target acc parallel

omp teams distribute acc loop gang

omp parallel for acc loop worker

memory omp target data map (...) acc data copy...

omp declare target (...) acc declare (...)

atomics omp atomic acc atomic

lock omp critical —
sync threads omp barrier —

1/2 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

OpenMP target and OpenACC: Directives

OpenMP target OpenACC
execution omp target acc parallel

omp teams distribute acc loop gang

omp parallel for acc loop worker

memory omp target data map (...) acc data copy...

omp declare target (...) acc declare (...)

atomics omp atomic acc atomic

lock omp critical —
sync threads omp barrier —

2/2 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Results: HelloWorld

1 alpaka::exec<Acc>(queue, workDiv,
2 [] (const auto& acc) {
3 const auto gidx = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc);
4 const auto gext = alpaka::getWorkDiv<alpaka::Grid, alpaka::Threads>(acc);
5

6 const auto lgidx = alpaka::mapIdx<1u>(gidx, gext);
7

8 printf("[z:%u, y:%u, x:%u][linear:%u] Hello World\n", gidx[0u], gidx[1u], gidx[2u], lgidx[0u]);
9 });

10 alpaka::wait(queue);

Clang Main ROC Clang NVHPC 21.7
x86 hsa hsa x86 nvptx

compile X no c-lib X X X

run X X X X

2/2 Porting a C++ Abstraction Layer to Directive-based Offloading · 2021-10-15

Results: HelloWorld

1 alpaka::exec<Acc>(queue, workDiv,
2 [] (const auto& acc) {
3 const auto gidx = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc);
4 const auto gext = alpaka::getWorkDiv<alpaka::Grid, alpaka::Threads>(acc);
5

6 const auto lgidx = alpaka::mapIdx<1u>(gidx, gext);
7

8 printf("[z:%u, y:%u, x:%u][linear:%u] Hello World\n", gidx[0u], gidx[1u], gidx[2u], lgidx[0u]);
9 });

10 alpaka::wait(queue);

Clang Main ROC Clang NVHPC 21.7
x86 hsa hsa x86 nvptx

compile X no c-lib X X X

run X X X X

	Weak Scaling FOM Case on Summit
	PIConGPU Full Software Stack
	Abstraction Layers and Accelerated Computing in C++
	Offloading Models
	Abstraction Layers in C++

	OpenACC and OpenMP target
	OpenMP target and OpenACC
	Accelerator Execution Hierarchy

	Porting Alpaka
	
	: Queues and Tasks
	: Kernel
	: Kernel Environment
	: Memory
	: Globals and Constants

	Issues and Results
	Issues in Standards
	Tested Compilers
	Compiler Issues I
	Compiler Issues II
	Results: VectorAdd
	Results: Test Suite
	Results:

	Outlook
	Outlook
	Acknowledgments

	Appendix
	OpenMP target and OpenACC: Directives
	Results: HelloWorld

