e eC21

science
& beyond.

St.Louis,
MO

Can Fortran’s do concurrent’ replace
directives for accelerated computing?
Miko Stulajter, Ronald M. Caplan, and Jon A. Linker

//_\
D
N

WACCPD 2021

Eighth Workshop on Accelerator Programming Using Directives

Predictive Science Inc. > Www.predsci.com

@ Predictive Science Inc. | I ntrOd u Cti O n WACCP D 2021

* Directives (e.g. OpenMP/OpenACC) are popular for parallelization on
CPUs and GPUs

* Standard languages have begun to add features that compilers can use
to parallelize code

C++17’s Standard Parallel Algorithms

Fortran’s do concurrent

* GPU-offload of directives supported by many compilers:

NVIDIA HPC SDK, Intel OpenAPI HPC Toolkit, LLVM Flang (along with AMD AOCC/AOMP
extensions), IBM’s XL, HPE’s Cray Fortran

* Here, we want to test the current status of being able to replace
directives with do concurrent for accelerated computing

@ Predictive Science Inc. | D i re Ctives WACCPD 2021

Directives are widely used for parallelizing codes UpenAcc

More Science, Less Programming

“OpenACC is a user-driven directive-

« Performance can « Not alwa YS based performance-portable parallel
Taal - programming model. It is designed for
D€E Sll n,;IFI)? rto IOW su p pO rted scientists and engineers interested in
eve S o porting their codes to a wide-variety of
APls] C_a n chan g_e / heterogeneous HPC hardware platforms
« Portabil |ty requiring re-writes and architectures with significantly less
programming effort than required with a
 Minimal code e Can make code low-level model.” - openacc. org

interference harder to read OpenMP

for (i=0; i<N; i++)

. . . Enabling HPC since 1997
yli] = a*x[1] + yl[1]’

“OpenMP is a specification for a set of
compiler directives, library routines, and

pragma acCcC kernels environment variables that can be used
=0 - 3 g B to specify high-level parallelism in
for (1=0 4 1<N 4 1++) Fortran and C/C++ programs.” -

Y[i] = a*X[i] + Y[i]; openmp . org

@ Predictive Science Inc. | COde DeSCri ption WACCPD 2021

Space weather events can cause interference
& damage to electronic infrastructure

* New NASA+NSF program called SWQU to
improve models of solar wind and solar

storms
 HipFT: Aflux-evolution code to generate |) &
observation-based model boundary l' ‘ ‘ | :] _
conditions TR ——
* Most expensive computation of HipFT 5__-*__,“{%:;;_2'@ .
encapsulated in BC-smoothing tool DIFFUSE | === =Yk 5=)
e AT /
* Here we use DIFFUSE as a mini-app of S
HipFT for DC tests OpenACC ¥ v
OpenMiP E‘.}; y

@ Predictive Science Inc. |

TIBRLSE

Integrates the spherical
surface heat equation

Logically rectangular
non-uniform grid

Operator is discretized
with a second-order
central finite-difference
scheme

Time integration with
second-order Legendre
polynomial extended
stability Runge-Kutta
scheme (RKL2)

Code Description cont. / Test Problem

WACCPD 2021

For a test problem, we select a real-world example
of using DIFFUSE, that of smoothing the ‘Native res
PSI| map’ described in

Caplan, R.M., Downs, C., Linker, J.A., Mikic, Z.: Variations in (finite-

difference potential fields. The Astrophysical Journal 915(1), 44 (jul 2021).
https://doi.org/10.3847/1538-4357 /abfd2f

Fig. 1. Zoomed-in detail of the test case magnetic field map before (left) and after
(right) smoothing with diffuse.

The grid has a resolution of 3974x2013 in theta-phi
and the test requires 40,260 iterations of the

diffusion operator

@ Predictive Science Inc. |

Computational Environment WACCPD 2021

Utilized the latest compilers at

time of testing

Compiler Suite Compiler Version
GNU Compiler Collection gfortran 11.2
NVIDIA HPC SDK nvfortran 217
Intel OneAPI HPC Toolkit ifort (classic) 213

Singularity containers used to
streamline testing and provide

reproducibility

Containers provide
performance comparable to

bare metal

Computational resources provided
by NSF's XSEDE program and the
CSRC at SDSU

\H\' P S C SAN DIEGO STATE Z';Q\

UNIVERSITY g e

“osipa

>

nnnnnnnnnnnn

CPU GPU
" ’ “ (2x) AMD EPYC 7742 NVIDIA A100
CPU/GPU Model (128 cores) SX M4
Peak Memory Bandwidth 381.4 GB/s 1555 GB/s
Clock Frequency (base/boost) 2.3/3.4 GHz 1.1/1.4 GHz
RAM 256 GB 40 GB
Peak DP FLOPs 7.0 TFLOPs 9.8 TFLOPs

@ Procictve sence ne. Baseline Performance Results WACCPD 2021

E= NVIDIA nvfortran (CPU) E==1 NVIDIA nvfortran (GPU)
- 20001 B GNU gfortran (CPU) — 801 mEE GNU gfortran (GPU)
2 E= INTEL ifort (CPU) O T o (over 10 runs)
5 T o (over 10 runs) S
0 1500 0 601
U 1284.6 1308.8 1318.6 U 49.5
() ()
£ £
—] — :
' 1000 M 40
@) U
O L2,
O @)
< 500 20
= =
0 Serial OpenMP OpenACC Serial OpenMP Serial OpenMP 0 OpenACC OpenACC
1-core 128-cores 128-cores 1-core 128-cores 1-core 128-cores A100 40GB A100 40GB

* OpenACC and OpenMP similar performance for CPU

* All compilers similar for CPU

* Note DIFFUSE is memory-bound so low speed-up over CPU cores is not unusual
* nvfortran fasterthan gfortran for OpenACC GPU

O s, |Mplementation: Fortran’'s do concurrent’ WACCPD 2021

e Introduced in ISO Standard Code 1 Nested do loops with OpenMP/ACC directives
I$omp parallel do collapse(2) default(shared)
Fortran 20083 I$acc parallel loop collapse(2) default(present)
» Indicates loop can be run with e el
out-of-order execution Computation
enddo
 Can be seen as hint to the enddo
COmpiler that |OOp may I$acc end parallel loop
be parallelizable I'$omp end parallel do
e Current Speciﬁcation has no Code 2 Nested do loops as a do concurrent loop
Support of reductions or do concurrent (i=1:N, j=1:M)
_ Computation
atomics enddo
Compiler Version do concurrent parallelization support

Parallelizable on CPU with “-ftree-parallelize-loops=X"
flag. Locality of variables is not supported.
Parallelizable on CPU and GPU with the “-stdpar”
flag. Locality of variables is supported.
Parallelizable on CPU with the “-fopenmp” flag.
Locality of variables is supported.

gfortran > 9

nvfortran | > 20.11

ifort > 19.1

(O procitve scence nc. Implementation: Code Versions WACCPD 2021

 Original: Uses directives and data movement directives

* New: Uses do concurrent except for reductions and data
movement directives

 Serial: No directives or do concurrent loops

« Experimental: All directives removed, and all parallelizable loops
utilize do concurrent including reductions.

This represents "ideal" situation of having no directives

do concurrent Directives
Original None all loops & data management
New all loops except reductions | reduction loops & data management
Serial None None
FEzxperimental all loops None

@ Preccive science e, Implementation: Compiler Options WACCPD 2021

* Utilized -03 and -march=<ARCH> for all compilers
* gfortran:
e CPU: -fopenmp and/or -ftree-parallelize-loops=<N>
e GPU: -fopenacc and -foffload=nvptx-none
* nvfortran:
e CPU: -acc=multicore and/or -stdpar=multicore
* GPU: -stdpar=gpu and/or —acc=gpu and —gpu=cc<X><Y>, cuda<x>.<Yy>

* Note unified memory is enabled by default
(can turn off with —gpu=nomanaged)

e 1ifort:
e CPU: -fopenmp
 GPU: No support for NVIDIA GPUs

@ Predictive Science Inc.

Results:

WACCPD 2021

GPU 60
Jode Compiler flags =3 NVIDIA nvfortran (GPU)
— 7501 T o (over 10 runs)
Original S nER =
-gpu=cc80,cudall.4 =
O
Nsis -acc=gpu -stdpar=gpu © 407 35.1 35.7 35.6
-gpu=cc80,cudall.4 P
= - £30
Experimental SicparmEpy =
-gpu=cc80,cudall.4 X
9 201
O
CPU = 10/
Code Compiler flags
Serial 0 Original New Experimental
Original -acc=multicore AL00 4068 O R100 4065 A100 40GB
Ne -acc=multicore 1600
cw -Stdparzmulticore E= NVIDIA nvfortran (CPU)
—~ 1400+
Experimental -stdpar=multicore i 12846 L _gfover 10 runs)
€ 1200
0
Y 1000
. ()
» GPU performance stayed consistent £ 800
G 600
: L
 CPU performance stayed consistent S 400l
©
=
. 200
* Experimental code worked correctly §
o OPeMACC) (DC+OpenACT) (0O

128-cores 128-cores 128-core

@ Predictive Science Inc.

Results:

WACCPD 2021

GPU
Code Compiler flags
-fopenacc
Original -foffload=nvptx-none
-fopenacc-dim=::128
New No Support

Experimental

No Support

CPU
Code Compiler flags
Serial
Original -fopenmp
New ~kopanip

-ftree-parallelize-loops=128

Experimental

-ftree-parallelize-loops=128

* No GPU support of do concurrent

parallelism

e CPU do concurrent support relies on

auto parallelization

 Small performance loss with auto

parallelization

B Ul (o)}
o o =,

Wall Clock Time (seconds)
w
(@)

49.5

B GNU gfortran (GPU)
I o (over 10 runs)

201
10
0 Original New Experi'mental
(OpenACC) (DC+0OpenACC) (DC)
A100 40GB Not Supported Not Supported
1600
B GNU gfortran (CPU)

- 1400 1308.8 T o (over 10 runs)
©
S 1200;
v
)
L 1000
()
£ 800;
|_
S 600
S
O
©
=

200

Serial
1-core

New Experimental
(DC+0OpenMP) (DC)
128-cores 128-core

@ Predictive Science Inc. | ReS u ItS : WACCP D 2021

* do concurrent gave better reool 13186 B3 INTEL ifort (CPU)
f CPU = - 1~ o (over 10 runs)
performance on o
§ 1200
 Currently no support on the GPU 3 1000
for do concurrent 2 oo,
=
 The experimental code gave the g 600
wrong answer = 400
. . = 194.9 178.3
« Compiler failed to correctly 2001
deteCt redUCtlonS 0 Serial Original New Experi'mental
1-core (OpenMP) (DC+0OpenMP) (DC)
128-cores 128-cores Incorrect Result
GPU CPU
Code Compiler flags Code Compiler flags
Onriginal No Support S(?'rz:al
New No Support Original ~fopenmp
Experimental No Support New ~fopenmp
Experimental | Incorrect Results

Discussion WACCPD 2021

« Compatibility on the GPU:
 Currently only nvfortran has do concurrent support

 Using do concurrent we lose gfortran GPU support
 Planned ifort support of do concurrent on Intel GPUs

« Removing data movement directives and relying on unified memory
could cause performance loss, but doesn’t here

 Portability:
 CPU multicore parallelization was not lost (except for Experimental
code)
* nvfortran and ifort have direct support of do concurrent on
CPUs

- gfortran relies on auto-parallelization detection
 Implicit reductions with do concurrent not supported everywhere

Discussion Continued WACCPD 2021

 Performance:

« Comparable performance for the original and new code for both
CPUs and GPUs

 Unified memory on GPU gave comparable performance to manual
data management with directives in this case

« Summary:
* do concurrent allows cleaner looking code and adds robustness

 nvfortran allowed for the elimination of all directives

 Using a combination of directives and do concurrent gives better
cross compiler/hardware compatibility at this time

Conclusion WACCPD 2021

Can Fortran's do concurrent replace directives for accelerated computing?

 With nvfortran and NVIDIA GPUs, for some codes (such as ours) the
answer is YES, and with no (or minimal) loss of performance.

* Upcoming language features and compiler implementations, may allow
more complicated codes to eventually be parallelized without directives

O precicive science nc._ Reproducibility with Singularity WACCPD 2021

DOl 10.5281/zenodo.5253520

predsci.com/papers/dc

Make sure singularity container does not
have overhead:

Table 12. Timing results on a Bridges2 CPU compute node using gfortran 10.2 bare
metal and form within a Singularity Container

Code Run method real (s) user (s) system (s)

. Bare Metal 1306.10 1294.30 0.154
Serial : . . .

Singularity 1300.43 1287.50 0.168

Original Bare Metal 164.87 20782.32 5.935

4 Singularity 165.27 20777.85 7.248

WACCPD 2021

Thank you for your attention.

Questions?

https://arxiv.org/abs/2110.10151

