
Can Fortran’s `do concurrent’ replace
directives for accelerated computing?
Miko Stulajter, Ronald M. Caplan, and Jon A. Linker

www.predsci.com

Introduction

• Directives (e.g. OpenMP/OpenACC) are popular for parallelization on
CPUs and GPUs

• Standard languages have begun to add features that compilers can use
to parallelize code

• C++17’s Standard Parallel Algorithms
• Fortran’s do concurrent

• GPU-offload of directives supported by many compilers:
• NVIDIA HPC SDK, Intel OpenAPI HPC Toolkit, LLVM Flang (along with AMD AOCC/AOMP

extensions), IBM’s XL, HPE’s Cray Fortran

• Here, we want to test the current status of being able to replace
directives with do concurrent for accelerated computing

Directives are widely used for parallelizing codes

Directives

“OpenACC is a user-driven directive-
based performance-portable parallel
programming model. It is designed for
scientists and engineers interested in
porting their codes to a wide-variety of
heterogeneous HPC hardware platforms
and architectures with significantly less
programming effort than required with a
low-level model.” - openacc.org

“OpenMP is a specification for a set of
compiler directives, library routines, and
environment variables that can be used
to specify high-level parallelism in
Fortran and C/C++ programs.” -
openmp.org

for (i=0; i<N; i++)
y[i] = a*x[i] + y[i];

#pragma acc kernels
for (i=0; i<N; i++)

y[i] = a*x[i] + y[i];

CONS
• Not always

supported
• APIs can change,

requiring re-writes
• Can make code

harder to read

PROS

• Performance can
be similar to low-
level APIs

• Portability
• Minimal code

interference

• Space weather events can cause interference
& damage to electronic infrastructure

• New NASA+NSF program called SWQU to
improve models of solar wind and solar
storms

• HipFT: A flux-evolution code to generate
observation-based model boundary
conditions

• Most expensive computation of HipFT
encapsulated in BC-smoothing tool DIFFUSE

• Here we use DIFFUSE as a mini-app of
HipFT for DC tests

Code Description

The grid has a resolution of 3974x2013 in theta-phi
and the test requires 40,260 iterations of the
diffusion operator

Code Description cont. / Test Problem
For a test problem, we select a real-world example
of using DIFFUSE, that of smoothing the ‘Native res
PSI map‘ described in• Integrates the spherical

surface heat equation
• Logically rectangular

non-uniform grid
• Operator is discretized

with a second-order
central finite-difference
scheme

• Time integration with
second-order Legendre
polynomial extended
stability Runge-Kutta
scheme (RKL2)

• Utilized the latest compilers at
time of testing

• Singularity containers used to
streamline testing and provide
reproducibility

• Containers provide
performance comparable to
bare metal

Computational Environment
• Computational resources provided

by NSF's XSEDE program and the
CSRC at SDSU

• OpenACC and OpenMP similar performance for CPU
• All compilers similar for CPU
• Note DIFFUSE is memory-bound so low speed-up over CPU cores is not unusual
• nvfortran faster than gfortran for OpenACC GPU

Baseline Performance Results

• Introduced in ISO Standard
Fortran 2008

• Indicates loop can be run with
out-of-order execution

• Can be seen as hint to the
compiler that loop may
be parallelizable

• Current specification has no
support of reductions or
atomics

Implementation: Fortran’s `do concurrent’

• Original: Uses directives and data movement directives
• New: Uses do concurrent except for reductions and data

movement directives
• Serial: No directives or do concurrent loops

• Experimental: All directives removed, and all parallelizable loops
utilize do concurrent including reductions.

This represents "ideal" situation of having no directives

Implementation: Code Versions

• Utilized -03 and -march=<ARCH> for all compilers
• gfortran:
• CPU: -fopenmp and/or -ftree-parallelize-loops=<N>
• GPU: -fopenacc and -foffload=nvptx-none

• nvfortran:
• CPU: -acc=multicore and/or -stdpar=multicore

• GPU: -stdpar=gpu and/or -acc=gpu and -gpu=cc<X><Y>,cuda<X>.<Y>

• Note unified memory is enabled by default
(can turn off with -gpu=nomanaged)

• ifort:
• CPU: -fopenmp

• GPU: No support for NVIDIA GPUs

Implementation: Compiler Options

• GPU performance stayed consistent
• CPU performance stayed consistent
• Experimental code worked correctly

Results: nvfortran

• No GPU support of do concurrent
parallelism

• CPU do concurrent support relies on
auto parallelization

• Small performance loss with auto
parallelization

Results: gfortran

• do concurrent gave better
performance on CPU

• Currently no support on the GPU
for do concurrent

• The experimental code gave the
wrong answer
• Compiler failed to correctly

detect reductions

Results: ifort

• Compatibility on the GPU:
• Currently only nvfortran has do concurrent support
• Using do concurrent we lose gfortran GPU support
• Planned ifort support of do concurrent on Intel GPUs

• Removing data movement directives and relying on unified memory
could cause performance loss, but doesn’t here

• Portability:

• CPU multicore parallelization was not lost (except for Experimental
code)

• nvfortran and ifort have direct support of do concurrent on
CPUs

• gfortran relies on auto-parallelization detection

• Implicit reductions with do concurrent not supported everywhere

Discussion

• Performance:
• Comparable performance for the original and new code for both

CPUs and GPUs

• Unified memory on GPU gave comparable performance to manual
data management with directives in this case

• Summary:
• do concurrent allows cleaner looking code and adds robustness
• nvfortran allowed for the elimination of all directives
• Using a combination of directives and do concurrent gives better

cross compiler/hardware compatibility at this time

Discussion Continued

Can Fortran's do concurrent replace directives for accelerated computing?

Conclusion

• With nvfortran and NVIDIA GPUs, for some codes (such as ours) the
answer is YES, and with no (or minimal) loss of performance.

• Upcoming language features and compiler implementations, may allow
more complicated codes to eventually be parallelized without directives

Reproducibility with Singularity

Make sure singularity container does not
have overhead:

predsci.com/papers/dc

Thank you for your attention.

Questions?

https://arxiv.org/abs/2110.10151

