
Sandia National Laboratories is a multimission

laboratory managed and operated by National

Technology & Engineering Solutions of Sandia,

LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of

Energy’s National Nuclear Security

Administration under contract DE-NA0003525.

ADELUS: A Performance-Portable Dense

LU Solver for Distributed-Memory

Hardware-Accelerated Systems

Vinh Dang , Jose ph Kotu l sk i , and S iva s ankaran Ra j aman ickam

B y

1

WACCPD@SC20 – Nov 13 , 2020

SAND2020-12737 C

Agenda

 Introduction

 Kokkos and Kokkos Kernels

 Method of Moments for Linear Electromagnetics

 Parallel LU Solver Implementation

 Distributed, real/complex, dense matrices

 ADELUS available in Trilinos

 Experimental Results

 Achieve 7.7 PFLOPS when integrated with a real-world application code

 Conclusions and Future Work

2

Introduction

 Solving a dense linear equations system A*X=B is one of the
most fundamental problems in numerous applications: physics,
mathematics, and engineering

 Our application of interest: boundary element method in
electromagnetics (method of moments)

 Despite its high computational complexity, a direct solver (LU
factorization) often provides more robust results than iterative
solvers for extremely ill-conditioned system matrices

 A distributed-memory, dense LU solver capable of utilizing
hardware accelerators available on top supercomputers is in need

 Performance-portability is important since future generation
exa-scale HPC architectures are continuously evolving with
significantly different architectures and programming models

3

Near-field and radiation pattern analysis

of integrated windscreen antenna

(Source: FEKO)

The upcoming Aurora supercomputer (2021)

(Source: Intel)

ADELUS’s Objectives

 A performance-portable dense LU solver for current and next
generation distributed-memory hardware-accelerated HPC
platforms

 Using LU factorization with partial pivoting for double
real/complex dense linear systems in distributed-memory
using MPI

 Using torus-wrap mapping scheme for workload distribution

 Leveraging Kokkos and Kokkos Kernels to provide performance
portability

 Integrating with a real-world application production code and
achieving PFLOPS performance

4

Naval vessel with helicopter on deck

(Source: FEKO)

The Summit supercomputer

(Source: ORNL)

ADELUS’s Objectives

 A performance-portable dense LU solver for current and next
generation distributed-memory hardware-accelerated HPC
platforms

 Using LU factorization with partial pivoting for double
real/complex dense linear systems in distributed-memory
using MPI

 Using torus-wrap mapping scheme for workload distribution

 Leveraging Kokkos and Kokkos Kernels to provide performance
portability

 Integrating with a real-world application production code and
achieving PFLOPS performance

5

Naval vessel with helicopter on deck

(Source: FEKO)

The upcoming El Capitan supercomputer (2023)

(Source: Hewlett Packard Enterprise)

Kokkos and Kokkos Kernels

Kokkos Overview7

Kokkos is a productive, portable, performant, shared-memory programming model.

 is a C++ library, not a new language or language extension.

 supports clear, concise, thread-scalable parallel patterns.

 lets you write algorithms once and run on many architectures

e.g. OpenMP on multi-core CPUs, CUDA on NVIDIA GPUs, HIP for AMD GPUs,
SYCL for Intel GPUs, ...

 minimizes the amount of architecture-specific implementation details users must
know.

 solves the data layout problem by using multi-dimensional arrays with architecture-
dependent layouts

https://github.com/kokkos/kokkos-tutorials/blob/master/Intro-Short/Slides/KokkosTutorial_ATPESC18.pdf

An Abstraction Layer to Prevent Rewriting an Entire Code8

The Kokkos Lecture Series, “Kokkos at the Center”. https://github.com/kokkos/kokkos-
tutorials/blob/main/LectureSeries/KokkosTutorial_01_Introduction.pdf

Kokkos Data Management and Execution9

Christian Trott, “Kokkos: Capabilities Overview”. https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf
Intel. Developer Guide for Intel Math Kernel Librar y for Linux . https://software.intel.com/en-us/node/528573

https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf

Kokkos Kernels10

Kokkos Kernels is a library for node-level,
performance-portable, computational kernels
for sparse/dense linear algebra and graph
operations, using the Kokkos.

 KK is available publicly both as part of
Trilinos and as part of the Kokkos
ecosystem
(https://github.com/kokkos/kokkos-
kernels)

 Building block of a solver, linear algebra
library that uses MPI and threads for
parallelism, or it can be used stand-alone
in an application.

 Generic implementations for various
scalar types and data layouts

 Interfaces to vendor-provided kernels
available in order to leverage their high-
performance libraries

 Several new kernels are being added as
needed by the applications

https://github.com/kokkos/kokkos-kernels

Method of Moments for Linear
Electromagnetics

Maxwell’s Equations in the Frequency Domain12

Wave Equations:

Maxwell’s Equations:

Instead of solving Maxwell’s
equations in 3D space via the wave
equations, we solve them on the
boundary between regions.

Vector and Scalar Potentials:

Lorenz gauge condition:

For a linear homogeneous, unbounded medium:

Free-Space Green’s Function:
Obs.
pt.

Integral Equations (Boundary Element Method – BEM)13

where,

Example of an electric field integral equation (EFIE) for metallic scatterer:

Through the equivalence principle, we consider the current on the
object boundary instead of the field around and inside the object.
Enforcing the boundary condition at the surface:

results in the following integral equation:

Vector Potential Scalar Potentials

Method of Moments (MoM)14

Numerical solution of integral equation:

Discretize the scatterersExpand unknown in a set of basis functions:

Test integral equation with basis functions.

Divergence-conforming
Rao-Wilton-Glisson

(RWG) basis functions

𝑍𝑚,𝑛 = න
𝑓𝑚

න
𝑓𝑛

𝑗𝜔𝜇𝒇𝑚 ∙ 𝒇𝑛 −
𝑗

𝜔𝜖
𝛻 ∙ 𝒇𝑚𝛻

′ ∙ 𝒇𝑛
𝑒−𝑖𝑘𝑟

4𝜋𝑟

Dense, Complex
Matrix

S.M. Rao, D.R. Wilton, A.W. Glisson, “Electromagnetic scattering by surface of arbitrary shape,” IEEE Trans. on Antennas and

Propagat., 30(3), 409–418 (1982)

Parallel LU Solver Implementation

ADELUS Interface and Storage16

 Dense matrix and RHS vectors that are block-mapped to the MPI processes

 ADELUS is called by MPI processes with the matrix portions packed with RHS vectors
(column-major order) as their inputs

 ADELUS data container is implemented by the Kokkos View for portability

In the host memory:
Kokkos::View<Kokkos::complex<double>**,Kokkos::LayoutLeft,Kokkos::HostSpace>

A("A",my_rows,my_cols+my_rhs);

In the CUDA device memory:
Kokkos::View<Kokkos::complex<double>**,Kokkos::LayoutLeft,Kokkos::CudaSpace>

A("A",my_rows,my_cols+my_rhs);

 Total number of MPI processes = 6

 Number of processes for a row = 3

 Number of right-hand sides = 2

Torus-Wrap Mapping17

 Advantage: each process has nearly the same
workload and the process idle time is minimized

 Column indices assigned to a MPI process
constitute a linear sequence with step size Pc

 Row indices are in a sequence separated by Pr

 No need to redistribute the block-mapped matrix
for torus-wrapped solver

 A block-mapped system can be solved by a solver
assuming a torus-wrapped system.

 Solution vectors are corrected afterwards by
straightforward permutations

 Total number of MPI processes: 6 (P=6)

 Number of processes for a row: 3 (Pc=3)

 Number of right-hand sides: 2

Np=N/Pc

Mp=N/Pr

P=PcPr

B.A. Hendrickson, D.E. Womble, “The torus-wrap mapping for dense matrix calculations on massively parallel computers,” SIAM J. Sci. Comput.15(5), 1201–1226(1994)

LU Factorization and Forward Solve

 Right-looking variant of the LU factorization with partial pivoting

 Kokkos Kernels BLAS interfaces are used for local matrices in each MPI
process
 Calls to optimized vendor library BLAS routines: multi-threaded CPU (IBM's

ESSL BLAS), massively parallel GPU architectures (cuBLAS)

 CUDA-aware MPI: simple communication patterns: point-to-point
communication and collective communication

 4 basic steps per iteration:

1. Find the pivot: each process finds its own local maximum entry in the
current column and then exchanges for the global pivot value.

2. Scale the current column with the pivot value, and generate and
communicate column update vector from the current column

3. Exchange pivot row and diagonal row

4. Update the current column, and when saving enough columns, update Z
via GEMM

18

KokkosBlas::iamax()

KokkosBlas::scal()

KokkosBlas::copy()

KokkosBlas::gemm()

MPI_Send()

MPI_Recv()

MPI_Irecv()

MPI_Allreduce()

MPI_Bcast()

Backward Solve

 Backward Solve
1. The elimination of the RHS/Solution is

performed by the process owning the current
column using the Kokkos parallel_for
across the RHS/Solution vectors

2. The results from the elimination step are
broadcasted to all the processes within the
MPI column sub-communicator

3. The KokkosBlas::gemm is then called to
update the RHS/Solution

4. Send the RHS/Solution vectors are sent to
the left processes

5. Receive the RHS/Solution vectors from the
right processes

19

1 2 3 1 2 3 1

5 6 4 5 6 4

3 1 2 3 1

4 5 6 4

2 3 1

6 4

1

1 1

4 4

1 1

4 4

1 1

4 4

1 1

Matrix RHS/Solution

1. elimination

2. MPI_Bcast

3. KokkosBlas::gemm

4. MPI_Send to the left processes

5. MPI_Irecv from the right processes

Permutation

 Permutation: to “unwrap the results”

 Solver assumes the torus-wrap mapping
scheme while the input matrix is not torus-
wrapped

 A temporary buffer for global solution vectors
created

 Kokkos parallel_for to fill the correct
locations in the global vectors

 MPI_Allreduce to collectively update the
change

20

M
P

I_
S
U

M

Experimental Results

Experimental Setup

 Summit system at the ORNL (4608 nodes): evaluating performance of ADELUS
with randomly-generated matrices
 Hardware (per node): 2 POWER9 CPUs (22 cores/each), 6 V100 GPUs (16GB

memory/GPU)
o Intra-node connection: NVIDIA's NVLink 2.0

o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network

 Software environment: GCC 7.4.0, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI 10.3.1

 DPLASMA: IBM XL C/C++ Compiler 16.1.1 instead of GCC 7.4.0

 SLATE: we use GCC 6.4.0 and ESSL 6.1.0, Netlib SCALAPACK 2.0.2

 Sierra system at the LLNL (4320 nodes): demonstrating performance of
ADELUS when integrated into a production electromagnetic application
code, EIGER
 Hardware (per node): 2 POWER9 CPUs (22 cores/each), 4 V100 GPUs (16GB

memory/GPU)
o Intra-node connection: NVIDIA's NVLink 2.0

o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network

 Software environment: GCC 7.2.1, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI 10.3.0

22

 Single RHS vector and the matrix size is
increased as we increase the hardware
resource

 GPU backend: ADELUS runs with one MPI
rank per GPU.

 CPU backend: ADELUS runs with one MPI
rank per node (42 cores)

 Baseline: a matrix (NN) represented in
double complex precision occupied a single
GPU’s memory

Randomly-Generated Matrices23

1 node

(NN)

2N

2N

3N

4N

3N

4N

4 nodes

(2 processes/row)

9 nodes

(3 processes/row)

16 nodes

(4 processes/row)

N = 27,882

Load Balancing Verification

 Factorization time on 36 MPI processes (36 GPUs) with the matrix size of 6N6N
(167,292167,292)

 Communication and update contribute the most to the total time

 Communication time is 1.47x-1.6x the update time

24

Cuda-aware MPI Host pinned memory for MPI

CPU Performance vs. GPU Performance

 A single GPU is 4.9x faster than a 42-core CPU while 100 GPUs are 3.8x faster than 100 42-core CPUs

 Communication overhead increases as processing larger problems (mostly by broadcasting pivot rows and
exchanging rhs vectors among column processes)

 CPU computation is still the dominant component in the total CPU time

 GPU computation is fast that makes the communication overhead the bottleneck

25

CPU execution time GPU execution time with host pinned memory

ADELUS vs. DPLASMA and SLATE

 Tuning DPLASMA and SLATE for their best performance

 ADELUS (43 TFLOPS) outperforms SLATE (38 TFLOPS) while is slower than DPLASMA (57 TFLOPS)
on 100 CPUs

 ADELUS is 4.57x faster than SLATE on 144 GPUs

 ADELUS can achieve 1.3 PFLOPS with 900 GPUs (the first complex, dense LU solver reaches PFLOPS
performance)

26

CPU performance GPU performance

Scalability Analysis27

S=
FLOPS 𝐦 ranks/GPUs, 𝐧∗N unknowns

FLOPS 𝟏 rank/GPU, 𝟏∗N unknowns

where ranks/GPUs = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

unknowns = 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9N, 10N

Scalability is defined as the normalized
FLOPS of multiple MPI processes with
respect to FLOPS of a single MPI process

 The increase of communication overhead
results in below ideal scalability in both CPU
and GPU runs

 ADELUS on CPUs scales more closely to
the theoretical ideal scalability than
ADELUS on GPUs

 GPU performance is MPI bound due to
the increase in the communication cost and
its high FLOPS

 Scalability needs further improvement

MPI Buffers on Different Memory Spaces

 Both CudaSpace and
CudaHostPinnedSpace can attain
performance above 1000 TFLOPs

 Using CUDA-aware MPI can improve the
performance by 6% since we do not need
to explicitly buffer data on host memory
before or after calling the MPI function

28

Large-Scale EM Simulation with EIGER29

 Couple EIGER with ADELUS to
perform large-scale
electromagnetic simulations on
the LLNL’s Sierra platform

 First time Petaflops performance
with a complex, dense LU solver:
7.72 Petaflops (16.9% efficiency
) when using 7,600 GPUs on
1,900 nodes on a 2,564,487-
unknown problem

 ADELUS’s performance is
affected by the distribution of the
matrix on the MPI processes

 Assigning more processes per row
yields higher performance

Kokkos:initialize()

Kokkos::finalize()

Transfer matrix+RHS to GPU

Transfer solution back to CPU

ADELUS C++ wrapper

Adelus::factor()

Adelus::solve()

Call MPI_INIT()

Call MPI_FINALIZE()

Construct matrix and RHS vector

Post-process solution vector

EIGER (FORTRAN)

Call ADELUS wrapper

Matrix+RHS vec.

Solution vec.

N Nodes (GPUs) Solve time (sec.) TFLOPS Procs/row

226,647 25 (100) 240.5 1291.0 10

1,065,761 310 (1240) 1905.1 1694.5 31

1,322,920 500 (2,000) 6443.9 958.1 20

1,322,920 500 (2,000) 2300.2 2684.1 50

1,322,920 500 (2,000) 2063.6 2991.9 100

2,002,566 1,200 (4,800) 3544.1 6042.6 100

2,564,487 1,900 (7,600) 5825.2 7720.7 80

Conclusions and Future Work

 A parallel, dense, performance-portable, LU solver based on torus-wrap mapping and LU
factorization algorithm

 Obtaining portability through Kokkos and Kokkos Kernels

 ADELUS’s performance on Summit: 1.397 PFLOPS on 900 GPUs

 The GPU execution is 3.8x faster than the CPU execution

 ADELUS integrated into an electromagnetic application (EIGER) achieves 7.720 PFLOPS on
7600 GPUs (a problem of 2.5M unknowns) on Sierra

 Future work:

 Using computation-communication overlapping to improve ADELUS scalability on GPUs

 A hybrid implementation where both CPU and GPU resources are fully utilized to overcome the
limitation of the GPU memory

30

Availability31

Acknowledgment
Sandia National Laboratories is a multimission laboratory managed and

operated by National Technology and Engineering Solutions of Sandia,

LLC., a wholly owned subsidiary of Honeywell International, Inc., for the

U.S. Department of Energy's National Nuclear Security Administration

under contract DE-NA-0003525.

https://github.com/trilinos/Trilinos/tree/master/packages/adelus

The driver code used for our ADELUS experiments can be found in

https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example

https://github.com/trilinos/Trilinos/tree/master/packages/adelus
https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example

