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Introduction

J Solving a dense linear equations system A*X=B is one of the
most fundamental problems in numerous applications: physics,
mathematics, and engineering

" Our application of interest: boundary element method in
electromagnetics (method of moments)

J Despite its high computational complexity, a direct solver (LU
factorization) often provides more robust results than iterative
solvers for extremely ill-conditioned system matrices

J A distributed-memory, dense .U solver capable of utilizing
hardware accelerators available on top supercomputers 1s in need

J Performance-portability is important since future generation
exa-scale HPC architectures are continuously evolving with
significantly different architectures and programming models

Near-field and radiation pattern analysis

of integrated windscreen antenna
(Source: FEKO)
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The upcoming Aurora supercomputer (2021)
(Source: Intel)



s+ I ADELUS’s Objectives

J A performance-portable dense LU solver for current and next
generation distributed-memory hardware-accelerated HPC

platforms

J Using LU factotization with partial pivoting for double . .
real/complex dense linear systems in distributed-memory Naval vessel with helicopter on deck
using MPI (Source: FEKO)

J Using torus-wrap mapping scheme for workload distribution

J Leveraging Kokkos and Kokkos Kernels to provide performance
portability

 Integrating with a real-world application production code and
achieving PFLOPS performance

The Summit supercomputer

(Source: ORNL)
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7 1| Kokkos Overview

Kokkos is a productive, portable, performant, shared-memory programming model.
J is a C++ library, not a new language or language extension.
J supports clear, concise, thread-scalable parallel patterns.

J lets you write algorithms once and run on many architectures

e.g. OpenMP on multi-core CPUs, CUDA on NVIDIA GPUs, HIP for AMD GPUs,
SYCL for Intel GPUs, ...

J minimizes the amount of architecture-specific implementation details users must
know.

] solves the data layout problem by using multi-dimensional arrays with architecture-
dependent layouts

https://github.com/kokkos/kokkos-tutorials/blob/master/Intro-Short/Slides/KokkosTutorial _ATPESCI 8.pdf



s I An Abstraction Layer to Prevent Rewriting an Entire Code

Applications Libraries Frameworks

t=0 t=40ps

UT Uintah
Combustine

SNL LAMMPS
Molecular Dynamics

NREL/SNL NALU

Wind Turbine CFD ORNL Raptor

Large Eddy Sim

Kokkos

FitptereR

Sliirore : [N

LANL/SNL Trinity SNL Astra
ANL Aurora , LLNL SIERRA
Intel Haswell / Intel KNL 40| xeon CPUSs + Xe Compute  ARM Architecture |5\ powerd / NVIDIA Volta

ORNL Frontier
Cray / AMD GPU

The Kokkos Lecture Series, “Kokkos at the Center”. https://github.com/kokkos/kokkos-
tutorials/blob/main/LectureSeries/KokkosTutorial 01 _Introduction.pdf



9 ‘ Kokkos Data Management and Execution

Kokkos

Data Structures Parallel Execution

Memory Spaces (“Where”) Execution Spaces (“Where”)
- Multiple-Levels - N-Level
- Logical Space (think UVM vs explicit) - Support Heterogeneous Execution

Memory Layouts (“How") Execution Patterns (“How")
- Architecture dependent index-maps - parallel_for/reduce/scan, task spawn
- Also needed for subviews - Enable nesting
Memory Traits Execution Policies
- Access Intent: Stream, Random, ... - Range, Team, Task-Dag
- Access Behavior: Atomic - Dynamic/ Static Scheduling
- Enables special load paths: i.e. texture - Support non-persistent scratch-pads

1 2 3 4 0 1 2 3

A: Column-major order (Fortran-style) B: Row-major order (C-style)

Christian Trott, “Kokkos: Capabilities Overview”. https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf
Intel. Developer Guide for Intel Math Kernel Library for Linux. https://software.intel.com/en-us/node/528573



https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf

Kokkos Kernels

Kokkos Kernels is a library for node-level,
performance-portable, computational kernels
for sparse/dense linear algebra and graph
operations, using the Kokkos.

a

KK 1s available publicly both as part of
Trilinos and as part of the Kokkos
ecosystem

(https://github.com/kokkos/kokkos-

kernels)

Building block of a solver, linear algebra
library that uses MPI and threads for
parallelism, or it can be used stand-alone
in an application.

Generic implementations for various
scalar types and data layouts

Interfaces to vendor-provided kernels
available in order to leverage their high-
performance libraries

Several new kernels are being added as
needed by the applications

ASC-IC/ATDM Applications

Trilinos

Kokkos EcoSystem

Kokkos Kernels

-

Kokkos Core

=)

/ Kokkos \

Support

<

--
v

h 4

e

=5 B

=

CPU + GPU


https://github.com/kokkos/kokkos-kernels

Method of Moments for Linear
Electromagnetics




12 I Maxwell’s Equations in the Frequency Domain

Maxwell’s Equations: Vector and Scalar Potentials:
Faraday : V xE = —jwB E=—wA-Vo

Ampere — Maxwell : V xH =J + jwD B=VxA
Electric Gauss: V-D = p Lorenz gauge condition:
Magnetic Gauss: V-B =0 VA= —jweud

Wave Hquations: Instead of solving Maxwell’s

equations in 3D space via the wave
equations, we solve them on the
boundary between regions.

»

For a linear homogeneous, unbounded medium:

Free-Space Green’s Function:




Integral Equations (Boundary Element Method — BEM)

EI'I

Excample of an electric field integral equation (EFIE) for metallic scatterer:

Through the equivalence principle, we consider the current on the
object boundary instead of the field around and inside the object. s’
Enforcing the boundary condition at the surface:

n x (Einc + Escat) =0

where, Vector Potential Scalar Potentials

Escat— jw#/ _ 3 Vf JS(r Vg I“I‘) ds’
/ W= L€

results in the following integral equation:




Method of Moments (MoM)

Numerical solution of integral equation:

1
L{JS} — 71{\1 X Einc

Expand unknown in a set of basis functions:

r) & Z I,f,(r)

Discretize the scatterers

: : : : : ‘.
Test integral equation with basis functions. AT py reTf
| fn(r) = sA=Pn TC T
/ fin - L{JS} ds = —— ' (ﬁ % Einc) ds 0 otherwise
S JWH
— Dense, Complex
Z1 =V Matrix
] —ikr
j j []wﬂfm fn__v me, fn]4_
f nr
m n
Divergence-conforming
S.M. Rao, D.R.Wilton,A.W. Glisson, “Electromagnetic scattering by surface of arbitrary shape,” IEEE Trans. on Antennas and Rao-Wilton-Glisson

Propagat., 30(3), 409418 (1982) (RWG) basis functions






ADELUS Interface and Storage

J Dense matrix and RHS vectors that are block-mapped to the MPI processes

J ADELUS is called by MPI processes with the matrix portions packed with RHS vectors
(column-major order) as their inputs

J ADELUS data container is implemented by the Kokkos View for portability

In the host memory:

Kokkos: :View<Kokkos: :complex<double>**,6K Kokkos: :LayoutLeft, Kokkos: :HostSpace>
A("A",my rows,my cols+my rhs);

In the CUDA device memory:

Kokkos: :View<Kokkos: :complex<double>**,6 Kokkos: :LayoutLeft, Kokkos: :CudaSpace>
A("A",my rows,my cols+my rhs);

Block columnid 1

2 3
Block row id
.
» Total number of MPI processes = 6
— "  Number of processes for a row = 3
. . . " Number of right-hand sides = 2
5 6




17 I Torus-Wrap Mapping

J Advantage: each process has neatly the same
workload and the process idle time 1s minimized

J Column indices assigned to a MPI process
constitute a linear sequence with step size P,

J Row indices atre in a sequence separated by P.

J No need to redistribute the block-mapped matrix
for torus-wrapped solver

= A block-mapped system can be solved by a solver
assuming a torus-wrapped system.

) Solution vectors are corrected afterwards by
straightforward permutations

M_=N/P,

P=PxP,

Total number of MPI processes: 6 (P=0)
Number of processes for a row: 3 (P.=3)
Number of right-hand sides: 2

B.A. Hendrickson, D.E.Womble,“The torus-wrap mapping for dense matrix calculations on massively parallel computers,” SIAM . Sci. Comput.15(5), 1201-1226(1994)



LU Factorization and Forward Solve

J Right-looking variant of the LU factorization with partial pivoting

] Kokkos Kernels BILAS interfaces are used for local matrices in each MPI

process

Calls to optimized vendor library BLLAS routines: multi-threaded CPU (IBM's
ESSL BLAS), massively parallel GPU architectures (cuBLAS)

J CUDA-aware MPI: simple communication patterns: point-to-point

communication and collective communication

J 4 basic steps per iteration:

1.

Find the pivot: each process finds its own local maximum entry in the
current column and then exchanges for the global pivot value.

Scale the current column with the pivot value, and generate and
communicate column update vector from the current column

Exchange pivot row and diagonal row

Update the current column, and when saving enough columns, update Z
via GEMM

KokkosBlas: :iamax ()
KokkosBlas: :scal ()
KokkosBlas: : copy ()
KokkosBlas: :gemm ()
MPI Send()
MPI Recv ()

MPI Irecv()

MPI Allreduce ()

MPI Bcast()




19 | Backward Solve

J Backward Solve

1.

The elimination of the RHS/Solution is
performed by the process owning the current
column using the Kokkos parallel for
across the RHS/Solution vectors

The results from the elimination step are
broadcasted to all the processes within the
MPI column sub-communicator

The KokkosBlas : : gemm is then called to
update the RHS/Solution

Send the RHS/Solution vectors are sent to
the left processes

Receive the RHS/Solution vectors from the
right processes

5. MPI_Irecv from the right processes

1. elimination *.....

5
*
*

1| [A 1]
s 4 4
2l
A
TR
1 o
TRERE
“

Matrix . RHS/Solution

i 3. KokkosBlas::gemm

v

2. MPI_Bcast

4. MPI_Send to the left processes



20 | Permutation

J Permutation: to “unwrap the results”

Solver assumes the torus-wrap mapping
scheme while the input matrix is not torus-

wrapped

A temporary buffer for global solution vectors
created

Kokkos parallel for to fill the correct
locations 1n the global vectors

MPI_Allreduce to collectively update the
change

MPI_SUM







2 | Experimental Setup

J Summit system at the ORNL (4608 nodes): evaluating performance of ADELUS
with randomly-generated matrices

= Hardware (per node): 2 POWER9 CPUs ( 22 cores/each), 6 V100 GPUs (16GB
memory/GPU)

o Intra-node connection: NVIDIA's NVLink 2.0
o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network

= Software environment: GCC 7.4.0, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI 10.3.1
= DPLASMA: IBM XL C/C++ Compiler 16.1.1 instead of GCC 7.4.0
= SLATE: we use GCC 6.4.0 and ESSL 6.1.0, Netlib SCALAPACK 2.0.2

 Sierra system at the LINL (4320 nodes): demonstrating performance of
ADELUS when integrated into a production electromagnetic application
code, EIGER

= Hardware (per node): 2 POWER9 CPUs ( 22 cores/each), 4 V100 GPUs (16GB
memory/GPU)

o Intra-node connection: NVIDIA's NVLink 2.0
o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network

= Software environment: GCC 7.2.1, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI 10.3.0



23 I Randomly-Generated Matrices

J Single RHS vector and the matrix size is
increased as we increase the hardware
resource

J GPU backend: ADELUS runs with one MPI
rank per GPU.

d CPU backend: ADELUS runs with one MPI
rank per node (42 cores)

J Baseline: a matrix (INxNN) represented in
double complex precision occupied a single
GPU’s memory

A A A
N
3N
~

4 nodes
(2 processes/tow)

9 nodes
(3 processes/row)

16 nodes
(4 processes/row)

N = 27,882
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M Local pivot M Msg passing ® Copying ™ Update M Local pivot M Msg passing M Host pinned mem copying M Copying M Update
Cuda-aware MPI Host pinned memory for MPI

 Factorization time on 36 MPI processes (36 GPUs) with the matrix size of 6NX6N
(167,292x167,292)

d Communication and update contribute the most to the total time

J Communication time is 1.47x-1.6x the update time



‘ CPU Performance vs. GPU Performance

POWER9 CPUs, Double Complex (N=27882) V100 GPUs, Double Complex (N=27882)
1400 1368 1400
1200 1195 1200
m 1056 n
2 1000 903 @ 1000
£ 800 759 £ 800
s 617 e
S 600 5 600
5 358 483 m Comm. B m Comm.
(8] Q
9 400 Comb. o 400 311 c
. 200 = o . 200 133 18/ 221 243 275 o
113 ,3 60 92 I I
100 1 4 9 49 100
rank, ranks, ranks, ranks, ranks, ranks, ranks, ranks, ranks, ranks, GPU, GPUs, GPUs, GPUS, GPUs, GPUs, GPUs, GPUs, GPUs, GPUs,
N 2N 3N 4N 5N 6N 7N 8N S9SN 10N N 2N 3N 4N 5N 6N 7N 8N SN 10N
Ranks, Unknowns GPUs, Unknowns
CPU execution time GPU execution time with host pinned memory

J A single GPU is 4.9x faster than a 42-core CPU while 100 GPUs are 3.8x faster than 100 42-core CPUs

J Communication overhead increases as processing larger problems (mostly by broadcasting pivot rows and
exchanging rhs vectors among column processes)

J CPU computation is still the dominant component in the total CPU time

J GPU computation is fast that makes the communication overhead the bottleneck



‘ ADELUS vs. DPLASMA and SLATE

Power9 CPUs, Double Complex (N=27882) V100 GPUs, Double Complex (N=27882)

6.0E+04 57 TFLOPS 1.0E+07
1316 TFLOPS

5.0E+04 1.0E+06 233 TFLOPS

43 TFLOPS
4.0E+04
v 1.0E+05
4 38 TFLOPS %
O 3.0E+04 ™
= -o-ADELUS O 1.0E+04 51 TFLOPS
© -e-ADELUS
2.0E+04 —S-SLATE SLATE
-
—+DPLASMA 1.0E+03
1.0E+04
1.0E+02
1.0E+02 SAS SN ST S SN S
Q o PRANNV NN AN N
1rank, 4 9 16 25 36 49 64 81 100 SN AN SN NN N N N R U A L TR a
VEE S E S E S S QY QY @Y Y @Y
N ranks, ranks, ranks, ranks, ranks, ranks, ranks, ranks, ranks, * O \?’ ,{;, 'bb © X Qy <)(:> ,\’(:) b‘(o (’JCD b‘(9 (00 00
KOSRAGIC g R VS
2N 3N 4N SN BN 7N 8N 9N 10N ~
Ranks, Unknowns GPUs, Unknowns
CPU performance GPU performance

J Tuning DPLASMA and SLATE for their best performance

J ADELUS (43 TFLOPS) outperforms SLATE (38 TFLOPS) while is slower than DPLASMA (57 TFLOPS)
on 100 CPUs

J ADEILUS is 4.57x faster than SLLATE on 144 GPUs

J ADELUS can achieve 1.3 PFLOPS with 900 GPUs (the first complex, dense LU solver reaches PELOPS
performance)



27 | Scalability Analysis

J Scalability is defined as the normalized
FLOPS of multiple MPI processes with
respect to FLOPS of a single MPI process

J The increase of communication overhead
results in below ideal scalability in both CPU
and GPU runs

J ADELUS on CPUs scales more closely to
the theoretical 1deal scalability than
ADELUS on GPUs

d GPU performance is MPI bound due to
the increase in the communication cost and

its high FLOPS

J Scalability needs further improvement

Scalability (V100 GPUs vs. POWER9 CPUs - Double Complex)
120

100

80

60
=@-ADELUS-GPU

ADELUS-CPU
=l-Theoretical

Normalized FLOPS

40

20

0
1rank, 4 ranks, 9ranks, 16 25 36 49 64 81 100

N 2N 3N ranks, ranks, ranks, ranks, ranks, ranks, ranks,
4N 5N 6N 7N 8N 9N 10N

Ranks, Unknowns

_ FLOPS(m ranks/GPUs, nxN unknowns)
FLOPS(1 rank/GPU, 1+«N unknowns)

where ranks/GPUs =1, 4, 9, 16, 25, 36, 49, 64, 81, 100
unknowns = 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9N, 10N



28 ‘ MPI Buffers on Different Memory Spaces

J Both CudaSpace and

CudaSpace vs CudaHostPinnedSpace

CudaHostPinnedSpace can attain Double Complex (N=27882)
performance above 1000 TFLOPs 1.6E+06
1397 TFLOPS
) ) 1.4E+06
d Using CUDA-aware MPI can improve the 1316 TFLOPS

. 1.2E+06
performance by 6% since we do not need

to explicitly buffer data on host memory
before or after calling the MPI function

1.0E+06

8.0E+05

GFLOPS

6.0E+05 =@-CudaHostPinned

4.0E+05 Space

-i-CudaSpace
2.0E+05

1.0E+02
A N N I NN N I Y I T Y
G GO gV GO D7 gV YT O O N0 N9 N9 N9 N O o
NEFSEEE SRR LS LS
YT 07T R @ 90wl wC 6 wC 00
A RV AT AV T QN o

GPUs, Unknowns



29 | Large-Scale EM Simulation with EIGER

EIGER (FORTRAN)
Call MPI_INIT()

ADELUS C++ wrapper

Kokkos:initialize()

Transfer matrix+RHS to GPU

J Couple EIGER with ADELUS to
perform large-scale
electromagnetic simulations on

the LLNL’s Sierra platform

Construct matrix and RHS vector

Matrix+RHS vec.
Adelus::factor()

Adelus::solve()

J First time Petaflops performance Solution vec.

with a complex, dense LU solver:
7.72 Petaflops (16.9% efficiency
) when using 7,600 GPUs on
1,900 nodes on a 2,564,487-

Post-process solution vector
Call MPI_FINALIZE()

Transfer solution back to CPU
Kokkos::finalize()

unknown problem 226,647 25 (100) 240.5 1291.0 10
ADELUS’s performance is 1,065,761 310 (1240) 1905.1 1694.5 31
affected by the distribution of the 1,322,920 500 (2,000) 6443.9 958.1 20
matrix on the MPT processes 1,322,920 500 (2,000) 2300.2 2684.1 50
= Assigning motre processes per row
vields higher performance 1,322,920 500 (2,000) 2063.6 2991.9 100
2,002,566 1,200 (4,800) 3544.1 6042.6 100
2,564,487 1,900 (7,600) 5825.2 7720.7 80



30 I Conclusions and Future Work

A parallel, dense, performance-portable, .U solver based on torus-wrap mapping and LU
factorization algorithm

0 Obtaining portability through Kokkos and Kokkos Kernels
J ADELUS’s performance on Summit: 1.397 PFLOPS on 900 GPUs
(J The GPU execution is 3.8x faster than the CPU execution

J  ADELUS integrated into an electromagnetic application (EIGER) achieves 7.720 PFLOPS on
7600 GPUs (a problem of 2.5M unknowns) on Sierra

J Future work:
= Using computation-communication ovetlapping to improve ADELUS scalability on GPUs

= A hybrid implementation where both CPU and GPU resources are fully utilized to overcome the
limitation of the GPU memory



31 | Availability

https://github.com/trilinos/Trilinos/tree/master/packages/adelus

d'The driver code used for our ADELUS experiments can be found in
https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example
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