
Performance Assessment of
OpenMP Compilers Targeting

NVIDIA V100 GPUs

Joshua H. Davis1, Christopher Daley, Swaroop Pophale, Thomas Huber, Sunita
Chandrasekaran, Nicholas J. Wright

1jhdavis@udel.edu
 @jhdavis_josh

Background and Motivation
• OpenMP is implemented by a growing number of compilers targeting

accelerators

– LLVM, GNU, IBM, Cray/HPE, AMD, Intel, NVIDIA

• ECP SOLLVE Verification and Validation Suite offers correctness status

• What is the performance status of OpenMP offloading compilers?

– What are the underlying causes of performance differences across
compilers?

– How should compiler and application developers tackle observed
performance differences in compilers?

2
jhdavis@udel.edu

@jhdavis_josh

https://crpl.cis.udel.edu/ompvvsollve/

Proxy App and Benchmark Suite

Selected real-world codes with potential to expose performance differences

• su3: complex number matrix-matrix multiply, from MILC1

• BabelStream: device memory bandwidth benchmark

• laplace: iterative Jacobi method solver for Laplace equation

• gpp: generalized plasmon-pole model, from BerkeleyGW1

• ToyPush (Fortran): electron sub-cycling, from XGC11

3

1ECP Applications

jhdavis@udel.edu
@jhdavis_josh

Systems and Compilers

4

Baselines

jhdavis@udel.edu
@jhdavis_josh

Compiler and App Compatibility

5

Runtime Error

No
Implementation

jhdavis@udel.edu
@jhdavis_josh

Summary of Recommendations (R)

6

Recommendation Compilers Affected

R1 Prefer combined constructs: interleaving code between teams and parallel harms performance Clang 11.0.0-git
(#17de334)

R2 Tune the kernel launch configuration: compiler-selected values are not always performant Clang 11.0.0-git
Cray-classic 9.0.0

R3 Avoid reductions where possible: they are inefficient for multiple compilers Clang 11.0.0-git
Cray-llvm 10.0.0

R4 When reductions are necessary, try using local variables to sequentialize some of the work Cray-classic 9.0.0

R5 Ensure that the GPU is being sent enough work: OpenMP runtime overhead can be significant for
some compilers

GCC 9.1.0
Clang 11.0.0-git

R6 Use GCC mainly for correctness at the current time GCC 9.1.0

jhdavis@udel.edu
@jhdavis_josh

R1: Prefer combined constructs

● su3: ~20x more DRAM write
transactions in Clang than CUDA

● Restructuring directives gives an 18x
speedup

7

GFLOPs per compilers for su3, unoptimized (V0)

Higher is better

jhdavis@udel.edu
@jhdavis_josh

R1: Prefer combined constructs

8

● Removing code between teams and
parallel constructs give similar
benefits to combined constructs

○ 18x speedup in su3 with Clang

● Fork-join model maps poorly to GPU

○ Excess memory flushes

○ Help the compiler by creating
parallelism upfront, allow for SPMD
transformation

jhdavis@udel.edu
@jhdavis_josh

#pragma omp target teams distribute
 for (int i = 0; i < total_sites; ++i) {
#pragma omp parallel for collapse(3)
 // 3 for loops ...

#pragma omp target teams
#pragma omp parallel
{
 // compute istart, iend for each team ...
 for (int i = istart; i < iend; ++i) {
#pragma omp for collapse(3)
 // 3 for loops ...

R2: Tune the runtime configuration

● 2.03x speedup in Cray-classic after
tuning num_teams in su3

○ Change default 81920 to 10000

● 4.45x speedup in Clang after tuning
num_teams and num_threads (after
directive restructuring)

○ Change defaults <128, 128> to <1600,
64>

9

GFLOPs per compilers for su3, unoptimized (V0)

Higher is better

jhdavis@udel.edu
@jhdavis_josh

R3: Reductions can be slow

● Clang: dot product kernel in BabelStream is slow due to use of + reduction

○ Introduces barrier latency

10
jhdavis@udel.edu

@jhdavis_josh

Higher is better

Fraction of peak memory bandwidth per compiler, kernel

R3: Reductions can be slow

● Cray-llvm: latency issues caused by max
reduction in laplace

○ “Long Scoreboard” samples: waiting on L1
cache

● Changing the reduction type to + instead
of max gives an 8.3x speedup

○ max reduction version has ~2745x more
atomic and L2 atomic transactions
compared to +

11
jhdavis@udel.edu

@jhdavis_josh

Composition of laplace kernel runtime

Lower is better

R4: Mitigate reduction slowdowns in
Cray-classic

● gpp uses an + reduction for an
important kernel

● Developers mitigated some
reduction performance issues

● gpp-portable performs some
reduction work sequentially in the
innermost loop on a local variable,
and then reduces on that local
variable

12

gpp-portable vs gpp-naive
execution time (s)

Lower is better

jhdavis@udel.edu
@jhdavis_josh

R5: Runtime overheads can be high

● laplace and ToyPush launch
many small kernels

○ More sensitive to OpenMP runtime
overhead

● Nvprof with NVTX range enables
separating out CPU, GPU, data
movement time

○ CPU time corresponds to runtime
overhead

13

NVTX Range Time = GPU Time + CPU Time + Data Movement Time

jhdavis@udel.edu
@jhdavis_josh

id1 = nvtxRangeStartA(“launch”);
#pragma omp target teams distribute parallel for
for (i = 1; i <= height; ++i) {
 // stencil update ...
}
nvtxRangeEnd(id1);

R5: Runtime overheads can be high

● GCC, Clang perform poorly with
laplace

● High CPU time to blame, i.e., high
OpenMP runtime overhead

– High GPU time in Clang on
Summit due to further elevated
barrier latency on reduction

14

Composition of laplace kernel runtime

Lower is better

jhdavis@udel.edu
@jhdavis_josh

Summary of Recommendations (R)

15

Recommendation Compilers Affected

R1 Prefer combined constructs: interleaving code between teams and parallel harms performance Clang 11.0.0-git
(#17de334)

R2 Tune the kernel launch configuration: compiler-selected values are not always performant Clang 11.0.0-git
Cray-classic 9.0.0

R3 Avoid reductions where possible: they are inefficient for multiple compilers Clang 11.0.0-git
Cray-llvm 10.0.0

R4 When reductions are necessary, try using local variables to sequentialize some of the work Cray-classic 9.0.0

R5 Ensure that the GPU is being sent enough work: OpenMP runtime overhead can be significant for
some compilers

GCC 9.1.0
Clang 11.0.0-git

R6 Use GCC mainly for correctness at the current time GCC 9.1.0

jhdavis@udel.edu
@jhdavis_josh

Conclusions and Future Work

● There is room for improvement in OpenMP implementations

○ Compiler developers should prioritize improving reductions and reducing overheads

○ Applications likely benefit more from an improved OpenMP compiler than the next GPU
generation

● Roofline analysis can be misleading — app can appear to be near memory
roofline due to excess data movement introduced by compiler

● Profilers, including nvprof and Nsight Compute, can be used to reveal which
directives are inefficient for a compiler and why

16
jhdavis@udel.edu

@jhdavis_josh

Future Work

● Evaluate on other GPUs or accelerators than the V100

○ AMD, Intel Xe

● Evaluate on other compilers, like AMD AOMP, Intel ICC

○ Future NVIDIA HPC SDK OpenMP support

● Something like the V&V suite: public suite of diverse real-world mini-apps

17
jhdavis@udel.edu

@jhdavis_josh

Acknowledgements

This research used resources of the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231. This research also used resources of the Oak
Ridge Leadership Computing Facility, a DOE Office of Science User Facility supported
under Contract DE-AC05-00OR22725. The authors would like to thank Doug Doerfler
and Rahul Gayatri for helpful discussion about the su3 benchmark and useful research
directions for this project.

18
jhdavis@udel.edu

@jhdavis_josh

Performance Summary

19
jhdavis@udel.edu

@jhdavis_josh

su3 Results

• su3 is a complex number
matrix-matrix multiply proxy app

• Cray-classic performance improves
after tuning num_teams

– Tuned to 10000, greater than
Clang-tuned value (1200), less than
default (81920)

• Clang uses ~20x more DRAM write
transactions than CUDA

20

GFLOPs per compilers for su3, unoptimized (V0)

Higher is better

su3: Removing interleaving code

21

● Directive restructuring led
to an 18x speedup in Clang
by reducing DRAM data
movement

● Removing code between
teams and parallel
constructs

su3 Results: Runtime configuration
• The tuning of runtime configuration is a major factor for Clang after restructuring

the directives

• Clang defaults to 128 teams with 128 threads per team, while our tuned values of
1600 teams with 64 threads each is 4.45x faster.

Number of Threads per Team

32 64 96 128 160

Number

of Teams

128 156.035 154.44

400 376.596

800 646.489

1200 701.546

1600 582.164 720.579 592.331 502.128 503.574

2000 551.603

22

babelStream Results
• babelStream is a memory bandwidth benchmark
• The dot product kernel uses an + reduction, and shows poor performance on

Clang
• Using Nsight source view, we find the the reduction induces barrier latency

23

Higher is better

Fraction of peak memory bandwidth per compiler, kernel

laplace Results

• laplace launches many small kernels, so it is more sensitive to OpenMP
runtime overhead. It also has an max reduction.

• Used an NVTX range to separate out GPU, CPU, and data movement time

24

Composition of laplace kernel runtime

Lower is better

laplace Results: Cray-llvm
• From Nsight Compute: max reduction also poses a latency problem for Cray-llvm

• However, the latency samples are mostly “Long Scoreboard” rather than barrier.

– Indicates warps are waiting on the L1 cache.

• Changing the reduction type to + instead of max gives an 8.3x speedup.

• From Nsight Compute SASS analysis: Cray-llvm implements the max reduction
less efficiently.

• max reduction version has ~2745x more atomic and L2 atomic transactions
compared to +.

25

gpp Results
• gpp uses an + reduction for an

important kernel

• Developers mitigated some
reduction performance issues

• gpp-portable performs some
reduction work sequentially in the
innermost loop on a local variable,
and then reduces on that local
variable

gpp-portable vs gpp-naive
execution time (s)

26

Lower is better

ToyPush Results
• ToyPush is a larger mini-app

• Exemplifies the pattern shown in
Laplace

• Large number of short-running
kernels: likely sensitive to
overhead

• Lower data movement in XL, PGI:
optimization copies data to pinned
memory in chunks before moving

ToyPush execution time (s)

27

Lower is better

laplace Results: Kernel Launch Latency

• Using an empty kernel and NVTX markers (as used for the application itself), we
observe all compilers show a launch latency of less than 2 microseconds.

• So high GPU time in Cray-llvm is likely be caused by something else

Compiler NVTX Duration (us) GPU Exec Time (us) Runtime Overhead (us)

Clang 38.43 1.664 36.766

Cray-llvm 24.054 1.632 22.422

Cray-classic 14.308 1.024 13.284

28

