
Achieving	Performance	Portability	for	
Extreme	Heterogeneity	

Mary	Hall	

WACCPD	
November	13,	2020	

1	

This	research	was	supported	by	the	Exascale	Computing	Project	(17-SC-20-SC),	a	
joint	project	of	the	U.S.	Department	of	Energy’s	Office	of	Science	and	National	
Nuclear	Security	Administration,	responsible	for	delivering	a	capable	exascale	
ecosystem,	including	software,	applications,	and	hardware	technology,	to	support	
the	nation’s	exascale	computing	imperative.	

This	research	used	resources	in	Lawrence	Berkeley	National	Laboratory	and	the	
National	Energy	Research	Scientific	Computing	Center,	which	are	supported	by	the	
U.S.	Department	of	Energy	Office	of	Science’s	Advanced	Scientific	Computing	
Research	program	under	contract	number	DE-AC02-05CH11231.	

2	

University	of	Utah	(students)	
David	Fridlander,	Rajath	Javali,	Vinu	Sreenivasan,	Hong	Yeung	
Lawrence	Livermore	National	Laboratory	
Tom	Scogland,	Bronis	de	Supinski	
Lawrence	Berkeley	National	Laboratory	
Sam	Williams,	Hans	Johansen	
Argonne	National	Laboratory	
Prasanna	Balaprakash,	Xingfu	Wu,	Brice	Videau	

3	

Source:	P.	Kogge	and	J.	Shalf,	"Exascale	Computing	Trends:	Adjusting	to	the	"New	Normal"'	for	
Computer	Architecture,"	in	Computing	in	Science	&	Engineering,	Nov.-Dec.	2013.	

4	

#3:	TaihuLight,	Sunway		
#4:	Tianhe-2,		Intel	Xeon	Phis	

#1:	Summit,	IBM	Power9+V100	GPUs		

#6:	Piz	Daint,	
Intel	Xeon+P100	
GPUs								

Can	the	same	program	perform	well	on	
diverse	supercomputing	platforms?	(e.g.,	Top	
500	list,	top500.org)	

5	

Fugaku	(Riken),	ARM	+	custom	optimizations	

Aurora,	Intel	Xeon	+	Intel	X	Compute	

Frontier,	AMD	EPYC	CPU	+	AMD	GPU	
6	

7	

8	

DOMAIN-SPECIFIC		
FRAMEWORK	

PRAGMA	INTERFACE	

SINGLE		
SOURCE	
CODE	

CPU	

GPU	

Key	Idea	
•  Add	pragmas	to	existing	(sequential)	code	
•  Programmer	productivity	
•  Achieve	high	performance	across	platforms	
Examples	
•  OpenMP	
•  OpenACC	
•  Compiler	pragmas,	e.g.,	Clang/Polly	

9	

Key	Idea	
•  Customize	optimization	for	a	specific	application	domain,	

easier	than	general	purpose		
•  Programmer	Productivity	
•  Achieve	high	performance	and	performance	portability		
Examples	
•  Stencils:	ExaStencils,	YASK,	Open	Climate	Compiler,	Pochoir	
•  Sparse	linear	algebra:	MT1,	Bernoulli,	Taco	
•  Tensor	contraction:	TCE	
•  Big	Data:	Map-reduce,	Spark	
•  Deep	Learning:	TensorFlow,	PyTorch	

10	

•  Portability	Frameworks,	e.g.,	Kokkos,	RAJA	
•  Parallelizing	Compiler	Technology,	e.g.,	MLIR	

Overlap,	and	all	should	be	part	of	ecosytem		

11	

12	

Concerns	

●  Same	OpenMP	directives	across	different	platforms?	

●  Programmer	writes	different	directives	to	port	code?			

●  Reduces	value	of	using	a	productivity	programming	model?	

Solution	

•  Use	autotuning	to	identify	best-performing	OpenMP	pragmas		

•  From	descriptive	to	prescriptive	OpenMP	

This	talk	focuses	on	OpenMP,	but	other	pragma	extensions	can	use	
the	same	approach.	

Search	Using	Random	Forest	(SuRF)	for	autotuning	search	
ytopt	toolkit	

Clang	

LLVM	

Polly	

OpenMP	

Polyhedral	compiler	in	LLVM	

Pragma	
Autotuner	
(using	
SuRF)	

#pragma	…	

pragma	metadata		

/* Clang/Polly example */
#pragma	clang	loop	unroll(4)	
for	(int	i	=	0;	i	<	n;	i+=1)		Statement(i);	

/* OpenMP example */
#pragma	omp	parallel	loop	
for	(int	i	=	0;	i	<	n;	i+=1)		Statement(i);	

/* OpenMP example */
#pragma	omp	target	team	distribute	
parallel	for		
for	(int	i	=	0;	i	<	n;	i+=1)		Statement(i);	

OpenMP	
loop	
A	loop	construct	
specifies	that	the	
iterations	of	the	
associated	loops	may	
execute	concurrently	
and	permits	the	
encountering	thread(s)	
to	execute	the	loop	
accordingly.	

Use	autotuning	to	
identify	a	replacement	
OpenMP	construct	that	
is	more	prescriptive	

convolution_2d.c	(Polybench):			
int	i,	j;	
//	P0	
#pragma	omp	parallel	loop	
		for	(i	=	1;	i	<	_PB_NI	-	1;	++i)	{	
				//	P1	
				#pragma	omp	loop	
				for	(j	=	1;	j	<	_PB_NJ	-	1;	++j)	{	

					B[i][j]	=		0.2	*	A[i-1][j-1]	+	0.5	*	A[i-1][j]	+	-0.8	*	A[i-1][j+1]	
														+	-0.3	*	A[i][j-1]	+	0.6	*	A[i][j]	+	-0.9	*	A[i][j+1]	
														+		0.4	*	A[i+1][j-1]	+	0.7	*	A[i+1][j]	+		0.1	*	A[i+1][j+1];	
				}	
		}	

17	

Directives Trees
We express the search space in our ConfigSpace (CS) that is where the decision trees are created and
stored. The tree below shows what selection each param (#P*) has available and how it connects to the
next parameter. After all possible params are selected it will form a directive for the problem set code to
use. In our Convolution-2d, it will have a starting point of #P1. After a valid directive is found, the #P1 line
will be replaced by the directive. Since there are many possibilities, we narrow down which directives to
be valid or invalid in our CS.

Invalid Directive
There are directives that are never valid, and we can forbid the possibility of them occurring using
forbidden clauses. An example of an invalid directive “#pragma omp “ using this case the following
forbidden clause makes sure that if #P1 selects “#pragma omp #P4” then #p4 should never be an ‘
‘ (empty string).

Forbidden_clause = CS.ForbiddenAndConjunction(CS.ForbiddenEqualsClause(p1, ‘#pragma omp
#P4’), CS.ForbiddenEqualsClause(p4, ‘ ‘)).

Valid Directive
We add many conditional clauses to
narrow down the next param which will
make the tree smaller. Having this
small tree it will then be added to the
decision trees.

The following clause cond2 =
CS.EqualsCondition(p4, p1,
‘#pragma omp #p4) is selected when
#P1 selects “#pragma omp #P4” and
#p4 is then “simd”.

#pragma omp simd

Results

Valid:	
cond2	=	CS.EqualsCondition(p4,	p1,	‘#pragma	omp	#p4)	
Invalid:		
Forbidden_clause	=	CS.ForbiddenAndConjunction(CS.ForbiddenEqualsClause(p1,	
‘#pragma	omp	#P4’),	CS.ForbiddenEqualsClause(p4,	‘	‘)).	

18	

Sp
ee
du

p	
ov
er
	P
ar
.	F
or
	B
as
el
in
e	

Sp
ee
du

p	
ov
er
	P
ar
.	F
or
	B
as
el
in
e	

Results	on	Pascal	and	Lassen,	LLNL,	using	Clang	and	XLC	compilers,	L	and	XL	inputs	

:	
•  	Parallelism	granularity	and	

architecture	
•  	Compiler	capability	(e.g.,	simd)	

:	
#pragma	omp	parallel	for	simd		num_threads(72)	

#pragma	omp	target	teams	distribute	parallel	for		collapse(2)			
num_threads(40)	dist_schedule(static,	8)	thread_limit(32)	
is_device_ptr(A,	B)	

#pragma	omp	target	teams	distribute	parallel	for	simd	
collapse(2)	schedule(static)			dist_schedule(static,	16)	
thread_limit(32)	is_device_ptr(A,	B)	

19	

•  Solve	partial	differential	equations	
– Outputs	computed	from	neighbors	in	
multi-dimensional	space	

– Multiplied	by	coefficient	

•  Access	pattern	arises	in	
convolutions	too	

•  Number	of	inputs	related	to	order	
of	stencil	
–  Low	order	–	memory	bound	
– High	order	–	compute	intensive	

20	

Idea	
–  Domain-specific	
programming	system	
designed	around	a	unit	of	
data	and	parallel	work	

–  Data	layout	for	each	node	
is	a	collection	of	these	
units	

–  Flexible	organization	and	
adaptivity	addresses	
performance	portability	

21	

Result	
– Speeds	up	data	
movement	

– Reduces	need	for	
data	movement	

– Reduces	on-node	
data	movement	for	
communication,	
improving	strong	
scaling	

22	

Description	 Example	

H					:	NODE							NODE	 Send	data	from	one	node’s	memory	to	another’s	

V			:	Memory								Cache	 Load	data	into	cache	

V			:	Cache								Register	 Load	data	resident	in	cache	into	a	(vector)	register	

V			:	Global	Memory							TLB	 Lookup	page	table	in	memory	to	cache	virtual	to	
physical	address	mapping	

V			:	CPU								GPU	 Load	data	from	GPU	memory	into	host	CPU	memory	

H					:	GPU								GPU	 Communicating	GPU	data	to	other	nodes’	GPUs	

• 	H					:	Horizontal	data	movement,	across	nodes	via	interconnect	
• 	V				:	Vertical	data	movement,	through	a	node’s	memory	system		

23	

Vertical	data	movement	impact	
•  Capacity	misses	in	caches	and	TLB	

•  Limits	hardware	prefetching	
effectiveness	

•  Reordering	in	registers	

Many-core	parallelism	&	tiling	make	
this	worse	

13-point	stencil	
7	distinct	address	streams		

Example:	13-point	stencil	

Out[i][j]	=	coeff*(In[i][j-3]+	
																				In[i][j-2]+	…	In[i][j+3]+		
																				In[i-3][j]+In[i-2][j]+…	
																				In[i+2][j]+	In[i+3][j]);	

Brick	Data	Layout	+	Code	Generator	
•  A	brick	is	a	mini	(e.g.,	8x8x8)	subdomain	
without	a	ghost	zone	

•  Application	of	a	stencil	reaches	into	other	
bricks	(affinity	important)	

•  Implemented	with	contiguous	storage	
and	adjacency	lists		

[Zhao	et	al.,	PP3HPC	2018]	[Zhao	et	al.,	SC	2019]	24	

Brick<Dim<8,8>, Dim<2,2>>
In(&brickInfo, brickStorage, 0);
...
for (long b: allbricks)
 for (long j = 0; j < 8; ++j)
 for (long i = 0; i < 8; ++i)
 Out[b][j][i] = In[b][j][i] * coeff[0] +
 In[b][j][i+1] * coeff[1] +
 In[b][j][i-1] * coeff[2] +

 In[b][j+1][i] * coeff[3] +
 In[b][j-1][i] * coeff[4];

25

•  Operates on brick input
and output arrays In/Out

•  Accesses outside of brick
b are automatically
resolved

•  Stencil for code
generation expressed in
Python

•  DAG representation for
performance portable
“vector” code generation

26

•  Collection of neighboring bricks co-located for
thread/node

•  Indirection permits different physical layout
from logical organization

1.2x
~1.06x

3.4x
~1.52x

1.6x
~1.33x

Maximum
Average

Intel Xeon Gold Skylake Intel Xeon Phi KNL Nvidia P100

28

Much better cache locality
Much less TLB pressure

Much better register reuse

70x 30x
18x

5x

12x

2.6x

In
te

l X
eo

n
Ph

i K
N

L

N
vi

di
a

P1
00

T. Zhao, P. Basu, S. Williams, M. Hall, and H. Johansen. 2019. Exploiting reuse and
vectorization in blocked stencil computations on CPUs and GPUs. SC’19.

29	

30	

DOMAIN-SPECIFIC		
FRAMEWORK	

PRAGMA	INTERFACE	

•  Thread	and	simd	code	
generator	for	DSL	

•  Use	for	portions	of	code	
outside	supported	domains	

•  Provide	data	layout	
abstraction	and	primitives	

•  Provide	domain-specific	
optimization	and	code	
generation	

•  Different	implementations	are	needed	for	
different	platforms	…	

•  …	but	single	source	performance	portability	is	
possible	

•  Lots	of	exciting	work	ahead	in	the	
programming	system	ecosystem	(compiler,	
DSL,	portability,	pragmas)	

•  Data	movement	drives	performance	
portability,	how	to	support	data	layout?	

31	

