
Evaluating Performance Portability of OpenMP
for SNAP on NVIDIA, Intel, and AMD GPUs

using the Roofline Methodology

Neil A. Mehta1, Rahulkumar Gayatri1, Yasaman Ghadar2, Christopher
Knight2, and Jack Deslippe1

1 NERSC, Lawrence Berkeley National Laboratory
2 Argonne National Laboratory

Abstract. In this paper, we show that OpenMP 4.5 based implementa-
tion of TestSNAP, a proxy-app for the Spectral Neighbor Analysis Poten-
tial (SNAP) in LAMMPS, can be ported across the NVIDIA, Intel, and
AMD GPUs. Roofline analysis is employed to assess the performance of
TestSNAP on each of the architectures. The main contributions of this
paper are two-fold: 1) Provide OpenMP as a viable option for appli-
cation portability across multiple GPU architectures, and 2) provide a
methodology based on the roofline analysis to determine the performance
portability of OpenMP implementations on the target architectures. The
GPUs used for this work are Intel Gen9, AMD Radeon Instinct MI60,
and NVIDIA Volta V100.

Keywords: Roofline analysis · Performance portability · SNAP.

1 Introduction

Six out of the top ten supercomputers in the list of Top500 supercomputers
rely on GPUs for their compute performance. The next generation of supercom-
puters, namely, Perlmutter, Aurora, and Frontier, rely primarily upon NVIDIA,
Intel, and AMD GPUs, respectively, to achieve their intended peak compute
bandwidths, the latter two of which will be the first exascale machines. The
CPU, also referred to as the host and the GPU or device architectures that will
be available on these machines are shown in Tab. 1.

Table 1. CPUs and GPUs on upcoming supercomputers.

System Perlmutter Aurora Frontier

Host AMD Milan Intel Xeon Sapphire Rapids AMD EPYC Custom

Device NVIDIA A100 Intel Xe Ponte Vecchio AMD Radeon Instinct Custom

The diversity in the GPU architectures by multiple vendors has increased
the importance of application portability. A wide range of programming frame-
works such as, Kokkos, [1] SYCL, [2] and HIP [3] have risen to address this
challenge. These languages provide a single front-end for application develop-
ers to express parallelism in their codes while the frameworks provide an op-
timized backend implementation on the chosen architecture. However, these

2 N. Mehta et al.

programming models require an extensive rewrite of the application codes in
C++, including the GPU kernels. Compiler directive-based programming mod-
els, such as OpenMP and OpenACC, present an attractive alternative for their
ease of use and non-intrusive approach to parallelizing applications. OpenMP has
been a popular compiler directive-based programming framework for CPUs and,
OpenMP 4.0 onward has included directives that allow application developers to
offload blocks of code onto GPUs for execution. OpenMP 4.5 and OpenMP 5.0
have increased the number of directives that will enable effective utilization of
the available GPU resources. Compilers such as LLVM/Clang, XL (IBM), Cray,
and GCC have already provided backend implementations to offload OpenMP
directives on NVIDIA GPUs. Intel and AMD compilers are committed to sup-
porting OpenMP 5.0 directives on their respective GPUs. Meanwhile, NVIDIA
has a contract with NERSC to support a subset of OpenMP 5.0 directives for its
compiler on the upcoming Perlmutter supercomputer, demonstrating long term
investment in supporting OpenMP.

In this paper, we present an OpenMP 4.5 based implementation for the Spec-
tral Neighborhood Analysis Potential (SNAP) module in LAMMPS. [4] Test-
SNAP is a stand-alone proxy app for SNAP that can be run independently of
LAMMPS and is written in C++. While we have developed Kokkos, CUDA,
and HIP versions of TestSNAP that we could have used for this profiling study,
the wider use of OpenMP and its support by the GPU vendors makes it the
perfect candidate for this study. The goal of this work was to create and test a
single source-code implementation that can be compiled and scheduled on the
NVIDIA, Intel, and AMD GPUs.

Application “Portability” implies the ability to compile and execute a single
source code on multiple architectures. “Performance Portability” includes the
ability to efficiently utilize available resources on the said architectures. A more
formal definition states that a code can be considered “performance portable” is
it consistently achieves consistent ratio of time-to-solution with the best time-to-
solution on each platform with minimal platform specific changes to the code. In
our study, the use of OpenMP 4.5 ensures that no platform specific changes are
required. However, because GPUs from various vendors have different compute
architectures, the “time-to-solution” is an inefficient metric for comparison. To
assess the efficiency of an application on the target hardware, we have used the
roofline analysis to test our OpenMP implementation of TestSNAP by comparing
its arithmetic intensity (AI) with the peak achievable AI of the hardware.

We have compiled and executed TestSNAP on testbeds for each of the su-
percomputers mentioned above, i.e., Perlmutter, Aurora, and Frontier. Testbeds
contain intermediary hardware that will fall somewhere between the Summit
and exascale systems in terms of power and capabilities. The GPU racks on Cori
at NERSC, the Iris node on Joint Laboratory for System Evaluation (JLSE)
at Argonne National Lab, and the Hewlett Packard Enterprise built Cray Tulip
machine serve as testbeds for Perlmutter, Aurora, and Frontier machines, re-
spectively. GPUs available on each testbed are shown in Tab. 2. Even though,
Intel’s Gen9 GPU will not be used on the upcoming HPC machines, it does serve

TestSNAP OpenMP on Intel, AMD, and NVIDIA GPUs 3

Table 2. CPUs and GPUs available on test beds.

Test bed Cori-GPU JLSE Tulip

Host Intel Skylake Intel Xeon AMD EPYC

Device NVIDIA V100 Intel Gen9 AMD MI60

as a good platform to test performance portability of the code on the upcoming
next generation discrete GPUs from Intel.

2 OpenMP offload implementation of TestSNAP

SNAP is an interatomic potential provided as a component of the LAMMPS
MD toolkit. [4] When using the SNAP model, the potential energy of each atom
is evaluated as a sum of weighted bispectrum components. The bispectrum, also
known as the descriptor, describes the positions of neighboring atoms and the lo-
cal energy of each atom based on its location for a given structural configuration.
This bispectrum is represented by its components, which are used to reproduce
the local energy [5]. The neighboring atom positions are first mapped over a
three-dimensional sphere using the central atom as the origin to generate the
bispectrum components. The mapping ensures that the bispectrum components
are dependent on the position of the central atom and three neighboring atoms.
Next, we calculate the sum over a product of elements of Wigner D-matrix, a
smoothing function, and the element dependent weights. Because this product
is not invariant under rotation, we modify it by multiplying with coupling coeffi-
cients, analogous to Clebsch-Gordan coefficients for rotations on the 2-sphere, to
generate the bispectrum components. The band limit for bispectrum components
is set by J, which determines how many and which bispectrum components are
used for the simulation. We do not provide a detailed discussion on the SNAP
algorithm since it is not in the scope of this paper. Instead, we provide the reader
with the implementation details of TestSNAP, the proxy-app for SNAP, since
they are necessary to understand it’s OpenMP 4.5 implementation. The SNAP
algorithm is explained in [6] by the original authors Thompson, et al.

2.1 Refactoring routines for GPUs

The pseudo-code for TestSNAP is shown in listing 1.1. Each of the compute
routines shown in listing 1.1 iterate over the bispectrum components and store
their individual contributions in a 1D array.

Listing 1.1. TestSNAP code
1 for(int natom = 0; natom < num_atoms; ++ natom)
2 {
3 // build neighbor -list for all atoms
4 build_neighborlist ();
5

6 // compute atom specific coefficients
7 compute_U (); // Ulist[idx_max] and Ulisttot[idx_max]

4 N. Mehta et al.

8 compute_Y (); // Ylist[idx_max]
9

10 // for each (atom ,neighbor) pair
11 for(int nbor = 0; nbor < num_nbor; ++nbor)
12 {
13 compute_dU (); // dUlist[idx_max][3]
14 compute_dE (); // dElist [3]
15 update_forces ()
16 }
17 }

idx max represents the maximum number of bispectrum components and is de-
termined by the value of J. TestSNAP problem sizes 2J14, 2J8, and 2J2 represent
an idx max size of 15, 9, and 3, respectively. For all three problem size, we use
2,000 atoms with 26 neighbors for each atom. The three problem sizes denote
the number of descriptors used to describe the energy of the atom with respect
to its surrounding. Therefore, even though the number of atoms for all three
problem sizes remain the same, the number of descriptors used to describe the
energy of these atoms ranges as 15, 9, and 3.

The for-loop in line 1 of listing 1.1 loops over all atoms in the simula-
tion to compute forces in a given time-step. First, a list of neighboring atoms
within a certain Rcut distance, is generated for each atom inside the routine
build neighborlist. The compute U routine calculates expansion coefficients
for each (atom, neighbor) pair and stores this information in Ulist. The ex-
pansion coefficients for each atom are summed over all its neighbors and stored
in Ulisttot. Next, the Clebsch-Gordon products for each atom are calculated
in the routine compute Y and stored in Ylist. As a precursor to force calcu-
lations, derivatives of expansion coefficients, stored in Ulist, are computed by
compute dU in all 3 dimensions using spherical co-ordinates and stored in dUlist.
Using dUlist and Ylist, the force vector for each (atom,neighbor) pair is com-
puted by compute dE and stored in dElist. Finally, the force on each atom is
computed from dElist in update forces. A correctness check is built-in, which
compares the proxy code output against a reference solution.

Based on the strategy used by newer SNAP implementation [7], the basic
TestSNAP algorithm discussed above was refactored to prioritize the completion
of each stage/routine for all atoms over the completion of all stages/routines for
a single atom. In the algorithm shown above, which is based on the older GPU
implementation of SNAP, [8], the work of each atom is mapped onto a GPU
thread block, and hierarchical parallelism is used to exploit additional parallelism
over the neighbor loop and the bispectrum components. However, converting the
four major routines, namely, compute [U,Y,dU,dE] as GPU kernels allow better
utilization of GPU resources. In the refactored code, the atom loop is placed
inside compute [U,Y] and similarly, the atom and neighbor loops are placed
inside compute [dU,dE]. As an example, the refactored compute U, shown in
listing 1.2 is further refactored into two nested for loops, one to calculate Ulist

and the other for Ulisttot.

Listing 1.2. compute U
1 void compute_U ()
2 {

TestSNAP OpenMP on Intel, AMD, and NVIDIA GPUs 5

3 compute_uarray ();
4 add_uarraytot ();
5 }
6 void compute_uarray ()
7 {
8 for(int natom = 0; natom < num_atoms; ++ natom)
9 for(int nbor = 0; nbor < num_nbor; ++nbor)

10 for(int j = 0; j < idx_max; ++j)
11 Ulist(natom ,nbor ,j) = ...
12 }
13 void add_uarraytot ()
14 {
15 for(int natom = 0; natom < num_atoms; ++ natom)
16 for(int nbor = 0; nbor < num_nbor; ++nbor)
17 for(int j = 0; j < idxu_max; ++j)
18 Ulisttot(natom ,j) += Ulist(natom ,nbor ,j);
19 }

2.2 Use of multidimensional (MD) data structures

One of the disadvantages of refactoring is that it makes it necessary to store the
atom and/or neighbor information as individual data structures across all rou-
tines. After refactoring, we need to store atom specific information in Ulisttot

and Ylist, and (atom, neighbor) specific information in Ulist, dUlist and
dElist arrays. To store this additional information, we create classes that mimic
the behavior of multi-dimensional (MD) arrays, such that all elements are stored
in a contiguous block of memory to improve memory locality. To achieve this
behavior, we have created C++ classes that include a pointer to the contiguous
block of memory and the information about the dimensions to calculate indexes
of individual elements based on the access pattern.

Listing 1.3. Array2D
1 template <class T>
2 struct Array2D
3 {
4 int n1, n2, size;
5 T *dptr;
6

7 Array2D(int in1 , int in2)
8 :n1(in1), n2(in2)
9 {

10 size = n1*n2;
11 dptr = new T[size];
12 }
13

14 inline T& operator () (int in1 , int in2)
15 {
16 return dptr[in1*n2 + in2];
17 }
18

19 Array2D(const Array2D& p)
20 {
21 n1 = p.n1; n2 = p.n2; size = 0;
22 dptr = p.dptr;
23 }
24

25 ~Array2D ()
26 {
27 if(size && dptr)
28 delete [] dptr;

6 N. Mehta et al.

29 }
30 };

A bare bone structure of a 2D class is shown in listing 1.3. The first and second
dimensions of the 2D array are stored as n1 and n2, while size represents the
total number of elements, i.e., n1 × n2. dptr points to a contiguous block of
memory for size number of elements. The operator overload of () allows us to
implement a FORTRAN style indexing for the exact element that is requested.
Hence on line 18 of listing 1.2, the element accessed by Ulisttot will evaluate
to Ulisttot.dptr[natom*idx max + j]. The copy constructor assigns size to
zero, which allows us protection against multiple deletions of the same memory
block, as shown in the destructor of the class on lines 22-26 of listing 1.3. Similar
to Array2D, Array3D and Array4D classes are created to represent 3D and 4D
arrays respectively. Array[2,3,4]D, i.e., ArrayMD classes, are templated over the
data type of their elements for generalization. ArrayMD objects of complex-
double type are created using a simple structure of two doubles to represent
a complex number as shown in line 1 of List. 1.4. We are aware that there
are standard multi-dimensional array classes available through C++ libraries.
However, we wanted the ability to control on data storage and array access
patterns specific to their usage on CPUs versus on GPUs. Therefore, these classes
were created for the purposes of representing MD arrays in TestSNAP and only
contain features that are needed by the application.

Listing 1.4. ArrayMD definitions of TestSNAP data structures.

1 struct SNAcomplex {double re,im;};
2

3 Array2D <SNAcomplex > Ulisttot(num_atoms ,idx_max);
4 Array2D <SNAcomplex > Ylist(num_atoms ,idx_max);
5 Array3D <SNAcomplex > Ulist(num_atoms ,num_nbor ,idx_max);
6 Array4D <SNAcomplex > dUlist(num_atoms ,num_nbor ,idx_max ,3);

Data has to be moved from CPU to GPU memory space before distributing
the work across GPU threads. We use the map clause in OpenMP to move data
between CPU and GPU. Ulist, Ylist, dUlist are only needed on the GPU
to store intermediary results between the compute routines. Hence, we use the
alloc mapper-type with the map clause to avoid unnecessary memory allocation
on CPU. ArrayMD classes are provided with a member function that creates
an object without memory allocation, specifically for this purpose. In contrast,
dElist is required for computing forces on the CPU after it is updated on the
GPU. Therefore, we create a block of memory on the CPU and use the to and
from mapper-type for data movement. Listing 1.5 shows how we achieve these
two distinct mappings. On line 1 of List: 1.5, we map Ulist and dElist data
structures on to the device using the to mapper-type, which performs a shallow
copy of data structures on the device. On line 2, the alloc mapper type is used to
allocate a block of memory on the device for size number of elements associated
with Ulist, whereas, in line 3, a deep copy of the memory block pointed by the
dptr of object dElist is performed. We use line 5 to copy the updated dElist

array back to the CPU.

TestSNAP OpenMP on Intel, AMD, and NVIDIA GPUs 7

Listing 1.5. Use of OpenMP directives to map data
1 #pragma omp target enter data map(to: Ulist , dElist)
2 #pragma omp target enter data map(alloc: Ulist.dptr [0: Ulist.size])
3 #pragma omp target enter data map(to: dElist.dptr [0: dElist.size])
4

5 #pragma omp target exit data map(from: dElist.dptr [0: dElist.size])

2.3 Optimizing routines for OpenMP offload

In addition to refactoring TestSNAP routines, it is also necessary to understand
data access patterns and OpenMP directives for further optimization of Test-
SNAP performance. We implemented three optimization strategies, each build-
ing on the previous one to make the final TestSNAP version highly performant
on all three GPUs.

Fig. 1. Code speed-up improvement relative to naive OpenMP 4.5 implementation
after array structure and loop access modifications at problem size 2J14.

Code performance is measured using grind-time, which is the average time
taken per atom per time-step to complete the force calculation and is calculated
in microseconds. The effectiveness of each optimization is measured in terms of,

Speed− up =
new grind time

naive grind time
. (1)

The naive grind time is obtained by running the most trivial GPU paralleliza-
tion on each architecture. The speed-up measured in this way ensures a fair
way of comparing optimization gains specific to each architecture. If the bar
is lower than one, it represents speed-up compared to baseline, and a greater
than one measurement implies performance degradation. Our results for each of
these optimizations are shown in Figs. 1 and 2. The performance plot is divided
into three categories, one for each GPU under consideration. Improvement gains
due to each optimization step are measured with respect to the naive OpenMP
implementation, referred to as Case 1. All optimizations are discussed with the
help of add uarraytot kernel shown in List: 1.2.

Case 1: We need a baseline to compare the efficiency of our optimizations. Case
1 refers to the naive OpenMP implementation where the atom-loop is distributed
across the GPU threads for compute [U,Y,dU,dE] routines.

8 N. Mehta et al.

Listing 1.6. Atom loop parallelization in add uarraytot

1 void add_uarraytot ()
2 {
3 #pragma omp target teams distribute parallel for
4 for(int natom = 0; natom < num_atoms; ++ natom)
5 for(int nbor = 0; nbor < num_nbor; ++nbor)
6 for(int j = 0; j < idxu_max; ++j)
7 ulisttot(natom ,j) += ulist(natom ,nbor ,j);
8 }

An example of our naive OpenMP implementation on add uarraytot is shown
in List. 1.6.

Case 2: Except in compute Y, each atom loops over its neighbors in all other
routines. A logical progression to parallelizing the atom loop is to include the
neighbor loop in the parallelization effort wherever possible. We can achieve
this by using the collapse clause in OpenMP. An unavoidable consequence of
the collapse clause makes it necessary to use atomic operations when updating
Ulisttot, as shown in List. 1.7.

Listing 1.7. Atom and neighbor loop parallelization in add uarraytot

1 void add_uarraytot ()
2 {
3 #pragma omp target teams distribute parallel for collapse (2)
4 for(int natom = 0; natom < num_atoms; ++ natom)
5 for(int nbor = 0; nbor < num_nbor; ++nbor)
6 for(int j = 0; j < idxu_max; ++j)
7 {
8 #pragma omp atomic
9 ulisttot(natom ,j) += ulist(natom ,nbor ,j);

10 }
11 }

While atomic calls are expensive, in this case, the benefits of increase in paral-
lelism achieved by looping over the neighbor dimension outweighs the overhead
incurred due to atomic operations. Distributing work over the atom and neigh-
bor dimension by the use of collapse clause gave us a 1.7× performance boost
on Intel Gen 9, while on AMD and Volta GPUs it gave us a 5.4× and 4.3×
performance improvement respectively.

Case 3: One of the most common optimizations on GPUs is the use of column
major data access pattern to improve memory coalescing. However, as shown
on line 16 of List. 1.3, we use the row-major style of indexing into the elements
of ArrayMD structures which helps to avoid cache thrashing and false sharing
on CPUs. Because of the modular design of ArrayMD structure, we can easily
modify the operator overload to support column major data access, as shown in
List. 1.8.

Listing 1.8. Column major indexing in Array2D

1 inline void operator ()(int in1 , int in2) {return dptr[in2*n1 + in1];}

But this modification does not lead to the intended speed-up. In fact, it leads to
performance degradation on all GPUs compared to case 2, as shown in Fig. 1.

TestSNAP OpenMP on Intel, AMD, and NVIDIA GPUs 9

The reason for this performance degradation is explained in Case 4.

Case 4: The advantage of column major data access on GPUs is the alignment
of memory accesses to reduce memory latency on SIMD architectures. In our
case this leads to atom dimension being accessed first by consecutive threads.
Collapsing the loops makes the index of the innermost loop as the fastest moving
index, which implies that the neighbor index becomes the fastest moving index.
In order to gain benefit from the column major access pattern, we swap the loop
order of atoms and neighbor in each of the routines, as shown on lines 4 and 5
in List. 1.9.

Listing 1.9. Atom and neighbor loop swap
1 void add_uarraytot ()
2 {
3 #pragma omp target teams distribute parallel for collapse (2)
4 for(int nbor = 0; nbor < num_nbor; ++nbor)
5 for(int natom = 0; nbor < num_atom; ++natom)
6 for(int j = 0; j < idxu_max; ++j)
7 {
8 #pragma omp atomic
9 ulisttot(natom ,j) += ulist(natom ,nbor ,j);

10 }
11 }

This allows us to take the advantage of coalesced memory access and gives us the
best performance across all 3 GPUs. Speed-ups obtained for problem size 2J8
are similar to those for 2J14, as shown in Fig. 2. Applying case 3 optimization to
the 2J8 problem did not degrade the performance to the extent observed in 2J8,
which may be because 2J8 problem size relies on smaller ArrayMD structs. The
performance gains after case 4 optimizations, although not as high as those for
2J14, are still significant highlighting the efficacy of the applied optimizations.

Fig. 2. Code speed-up improvement relative to naive OpenMP 4.5 implementation
after array structure and loop access modifications at problem size 2J8.

Compiler maturity plays a significant role in our ability to efficiently map
OpenMP directives on GPUs. Because the support for OpenMP directives on
GPUs is still in its early stages, each new version of the compiler can give a
significant advantage in terms of new features and increased efficiency of the
existing directives. Our OpenMP version of TestSNAP can be successfully com-
piled and executed on an NVIDIA V100 GPU with the LLVM/10.0 compiler.

10 N. Mehta et al.

Fig. 3. Schematic of roofline plot, showcasing typical kernel placements.

However, with LLVM/11.0 [9] as well as Intel’s®DPC++/C++ (ICX), [?] the
code triggers a bug, which results in the compiler being unable to map our
SNAcomplex structure, shown in List. 1.4, on to the device memory. To bypass
this bug, we have modified our ArrayMD structures of complex-doubles to struc-
tures of doubles with twice the size, such that even and odd indices point to real
and imaginary values, respectively. On AMD M160 we have used AOMP ver-
sion 11.5.1, which is based on LLVM/11.0. The bug reported to LLVM 11.0 has
since been fixed in version 12.0 and has been under review by Intel compiler
developers. It is important to note that we allowed the compiler to optimize the
number of teams and threads when running TestSNAP on all three GPUs. We
observed that the compiler optimized teams and threads input always provided
better run times compared to runs with manual input.

3 Methodology of roofline analysis

Modern computing architectures are varied and are considered guarded propri-
etary information of the vendor. Therefore, for a fair comparison, the roofline
model utilizes a simplified memory model, which assumes that all caches are
perfect. Under this assumption, the data flows between DRAM to cache with
sufficient bandwidth to not affect performance. Other assumptions include, the
communication and computation perfectly overlap, and cores can attain peak
floating point operations per second (FLOPs) on local data. These assumptions
allow one to measure kernel performance in terms of FLOPs capped by either
the peak attainable machine FLOPs or the amount of data that can be moved
based on the peak bandwidth throughput.

The measure of how well a kernel can benefit from the data reuse and device
bandwidth is quantified by the AI, which is calculated as the number of FLOPs
executed per byte of memory transferred to the memory level and is calculated
for each level of the memory hierarchy. A roofline plot is formed by plotting
attainable FLOPs as a function of AI for a given kernel on a log-log plot. The x-

TestSNAP OpenMP on Intel, AMD, and NVIDIA GPUs 11

and y-axis represent AI and performance, i.e., FLOPs, respectively. A schematic
of a typical roofline plot is shown in Fig. 3. The solid blue line represents the
peak attainable bandwidth for a particular memory hierarchy, in this case, the
HBM or DRAM of a given machine. No kernels can lie to the left of this line
as the attainable FLOP rate will always be bottle-necked by the throughput
capacity of the device. At any performance (FLOPs), for a kernel to lie to the
left of the bandwidth line, the denominator, i.e., the data transfer rate, will
have to be greater than the peak bandwidth of the memory hierarchy. Similarly,
the solid green line represents the peak FLOP rate of the machine, which is
determined by the machine cycle and is dependent on the compute architecture.
The point at which these two bounds meet is known as the “elbow”, and the
line joining the elbow to the x-axis is called an elbow line. All kernels to the left
of this elbow line are termed as “memory-bound” because their performance is
strongly affected by the memory bandwidth of the machine. Kernels to the right
of the elbow line are classified as “compute-bound” because they are bound by
the compute capability of the machine.

A roofline helps determine kernels where optimization efforts are most ben-
eficial. A couple of kernels are shown in blue, green, and red in Fig. 3. Kernels
shown in blue lie to the left of the 50% peak bandwidth line. While these kernels
have low AI, any additional improvement which increases the FLOPs will lead
to a relatively small gain in code performance as these kernels are “memory-
bound”. Kernels represented by green dots lie above the 50% peak FLOPs rate
line and are therefore making good utilization of the machine. In contrast, the
kernels shown in red have higher AI than many of the kernels shown in blue, but
they have not yet reached 50% of either compute or memory capacity. Optimiz-
ing these kernels will provide maximum gains in performance compared to other
kernels, which are already capped by either the bandwidth or peak FLOP rate of
the machine. The roofline plot also allows one to estimate the kernel performance
on future machine architectures. Assuming that an application has a majority
of kernels that are “memory-bound”, running this application on machines with
higher compute capability but the same memory bandwidth will provide only a
small improvement in the run-time and vice versa. Ideally, for modern GPUs,
where we have more compute power than the memory bandwidth, developers
should aspire to make their kernels compute-bound.

4 Results and discussion

4.1 Profiling code performance

To understand the performance difference between LLVM/11.0 and Intel®DPC++/C++
compilers, we have profiled TestSNAP on the Skylake 8180 processor. As shown
in Tab. 3, the step and grind times are similar for LLVM/11.0 and Intel®DPC++/C++
for the serial TestSNAP code on the Skylake processor. The LLVM/11.0 com-
piler is marginally better, which we suspect may be due to the maturity of the
LLVM/11.0 compilers in terms of performance refinement compared to the newly

12 N. Mehta et al.

Table 3. Comparison of OpenMP offload profiles on GPU measured for the 2J14
problem size for 100 time steps.

Version Serial (Skylake) OpenMP offload GPU

LLVM/11 ICX Gen9 MI60 V100

Step time (s/step) 9.7671 9.8669 1.8215 0.1394 0.0565
Grind time (ms/atm-stp) 4.8835 4.9334 0.9107 0.0697 0.0282
compute U (s) 0.6211 0.6221 0.1975 0.0153 0.0099
compute Y (s) 7.6839 7.6789 1.2005 0.0748 0.0271
compute dU (s) 1.2008 1.3363 0.3484 0.0389 0.0155
compute dE (s) 0.2604 0.2288 0.0741 0.0086 0.0028

introduced Intel®DPC++/C++. However, for the intent of our comparison, the
performance of both compilers on the Skylake processor is considered equal.

Table 4. Comparison of OpenMP offload kernel time loads of top 5 kernels, measured
for problem size 2J14, 2000 atoms, and 100 time steps.

Version Intel Gen9 AMD MI60 NVIDIA V100

Rank Time (%) Kernel Time (%) Kernel Time (%) Kernel

1 65.65 compute Y 57.01 compute Y 45.32 compute Y

2 19.15 compute dU 31.53 compute dU 25.80 compute dU

3 10.58 compute U 8.61 compute U 15.75 compute U

4 4.02 compute dE 2.44 compute dE 8.60 memcpy HtoD

5 0.41 WriteBuffer 0.29 zero uarraytot 3.96 compute dE

We use the IProf, ROCProf, and NVProf to profile our OpenMP implementa-
tion of TestSNAP on Intel, AMD, and NVIDIA GPUs, respectively. The relative
time required by the individual kernels is shown in Tab. 4. While all three GPUs
spend the highest amount of time in compute Y followed by compute dU and
compute U, the individual percentages vary. compute Y is computationally the
most expensive kernel followed by compute dU, and hence they are proportion-
ally the most expensive on each architecture. The initial data movement from
device to host on V100, shown in Tab. 4 as memcpy HtoD contributes 8.6% to
the total runtime. Currently, we are unable to obtain the time spent in the
data movement on the MI60 GPU using ROCProf, and therefore they are ab-
sent in the table. The data movement cost on the Gen9 GPU, represented as
WriteBuffer, is much lower because of the non-discrete nature of the Gen9 GPU
design. zero uarraytot only initializes Ulisttot to zero and therefore has very
low cost.

It should be noted that the percentage times for the kernels shown in Tab. 4
are obtained for problem size 2J14 and 100 timesteps. Reducing the number of
time steps leads to an increase in the fraction of time spent on data movement.
Similarly, reducing the problem size to 2J8 changes the order of kernel time
contribution, such that compute dU is most expensive followed by compute Y,

TestSNAP OpenMP on Intel, AMD, and NVIDIA GPUs 13

Fig. 4. DRAM roofline plot on Intel Gen9. Arrows point from 2J14->2J8->2J2.
Problem sizes 2J14, 2J8, and 2J2 are represented by full, half, and open symbols,
respectively.GTI and SLM are abbreviations of “Graphics Technology Interface” and
“Shared Local Memory”, respectively. The SLM is analogous to L3 cache.

compute U, and compute dE. As noted previously, problem size 2J2 is too small
to obtain meaningful data for real-world applications. However, we will discuss
the roofline results for 2J2 because it highlights some interesting differences
between the three GPUs.

4.2 Roofline analysis of TestSNAP code

Performance on Intel Gen9 GPU A high-level building block of Intel Gen
9 GPUs is the slice, and for an Intel Xeon Processor E3-1585 v5 with Iris Pro
Graphics P580 (GT4e), which was used in this work, contains 3 GPU slices.
Each GPU slice consists of 3 sub-slices, an L3 data cache bank, and shared local
memory. A sub-slice has 8 execution units (EUs), each containing 7 threads. Intel
processors include fast high bandwidth embedded DRAM (EDRAM) of 128 MB
into which the GPU may allocate memory.

We have used Intel® Advisor to collect the relevant metrics necessary to
generate the roofline plot and obtain the memory and compute peaks of the
Gen9 GPU. Metrics were obtained using the command shown in List. 1.10.

Listing 1.10. Command to collect the metrics for Intel Gen9
1 advixe -cl --collect=roofline --enable -gpu -profiling --project -dir=$PRJ --

search -dir src:r=$SRC -- ./ test_snap.exe -ns 100

here, $PRJ and $SRC denote the locations of user defined project directory into
which roofline results are stored and the code source directory, respectively. The
roofline plot of TestSNAP running on the Gen9 GPU is shown in Fig. 4 for
problem sizes 2J14, 2J8, and 2J2. The numbers in Fig. 4, next to the symbol,

14 N. Mehta et al.

correspond to the kernel names shown in the legend. Of note, from the Gen9
GPU roofline plot, while indicating the performance of kernels, it is also possible
to obtain details of data flow specific to the Gen9 compute architecture. As
a rule, kernel roofline symbols should never cross the memory hierarchy peak
bandwidths for which they are measured. For the roofline shown in Fig. 4, the
roofline data is generated at the DRAM level for all three problem sizes. However,
for 2J14 problem size, the roofline symbols are placed left of the DRAM peak
bandwidth line. This indicates that the data movement is not measured across
DRAM but across the faster embedded-DRAM or eDRAM, a special feature of
the Gen9 GPU.

All the kernels for the 2J14 and 2J8 problem sizes are bound by the peak
bandwidth of DRAM, as indicated by the kernel symbols located close to the
DRAM bandwidth line. compute Y is located close to the elbow created between
DRAM bandwidth and DP vector FMA peaks, which represents the region sepa-
rating “compute” and “memory-bound” regions. This indicates the simultaneous
usage of the available compute and memory resources. The other three kernels
are not as close to the elbow and are “memory-bound”. Finally, based on the
location of the 2J14 and 2J8 kernels, it is observed that all kernels are “memory-
bound”. When running a smaller problem size of 2J8, less data movement is re-
quired than 2J14, leading to higher AI for similar performance numbers, leading
to a rightward shift of the kernel roofline positions. When running the smallest
problem size 2J2, the required number of FLOPs is much less than the data
moved, which leads to a large downward shift of the kernel roofline positions,
markedly demonstrating poor use of compute resources.

Fig. 5. DRAM roofline plot on AMD Instinct MI60. Arrows point from 2J14->2J8-
>2J2. Problem sizes 2J14, 2J8, and 2J2 are represented by full, half, and open symbols,
respectively.

TestSNAP OpenMP on Intel, AMD, and NVIDIA GPUs 15

Performance on AMD Radeon Instinct MI60 GPU We have used the
ROC profiling tool to obtain the metrics required for the roofline plot on AMD
MI60. ROCProf used in this work is a part of the AMD ROCm version 3.6,
which is an open-source code development platform. Unlike Intel Advisor or
NVIDIA NSight Compute, we could not obtain the FLOP count of each kernel.
Instead, we have used the instruction based roofline model [10] to evaluate the
roofline performance of TestSNAP kernels on MI60. To calculate the number of
instructions executed, we have used metrics SQ INSTS VALU and SQ INSTS SALU

to obtain the number of vector and scalar instructions issued, respectively. We
have used metrics FETCH SIZE and WRITE SIZE, to gather read and write data
movements, respectively. These metrics are listed in the input.xml and provided
to ROCProf using the command shown in List. 1.11. Compute and memory
bandwidth peaks were obtained from Richards, et al. [11]

Listing 1.11. Command to collect metrics for MI60

1 ROCProf -i input.xml -o roofline.csv ./ test_snap.exe -ns 100

The instructions based roofline data generated using the metric collected at
the DRAM level is shown in Fig. 5. compute dU, compute U, and compute dE are
all “memory-bound”. Similar to the roofline plots discussed previously, kernel
compute Y is the most compute-intensive and, therefore, has the highest AI. It
is also close to the DRAM peak bandwidth line as well as the compute-bound
region, which indicates that compute Y is well-optimized and makes good use of
MI60 resources.

Comparing the roofline data of problem size 2J8 with 2J14, except compute Y,
all kernels retain their position on the roofline plot. This is because all the
necessary data required to run these kernels for problem sizes 2J14 and 2J8 are
bound by the DRAM bandwidth, meaning that almost all the required data is
fetched from DRAM for both cases. This leads to similar AI and performance
numbers for both 2J14 and 2J8. However, this is not the case for compute Y,
where the amount of data moved required for instructions executed is lower when
running the smaller problem size, 2J8. compute Y relies on the beta coefficients
stored in the database files, and at a smaller problem size of 2J8, a lesser number
of coefficients are used, and therefore, less data has to be moved. This is definitely
the case for all kernels at the smallest problem size 2J2, and consequently, all
kernels shift to the “compute-bound” region. The location of the kernels for
2J2 roofline indicates poor use of AMD MI60 GPU resources but shows better
utilization at problem size 2J14 and 2J8.

Performance on NVIDIA Volta V100 GPU The V100 belongs to the
Volta family of NVIDIA GPUs and, compared to Intel’s Gen9 and AMD’s MI60,
has been more widely adopted. Metrics necessary to generate the roofline plot
were collected using NVIDIA NSight Compute, an interactive kernel profiler.
NSight Compute functionality is supported for applications running on NVIDIA
GPUs and is provided with CUDA toolkit version 11.0. A total of 11 metrics are
collected to obtain the average elapsed time, the number of single and double

16 N. Mehta et al.

Fig. 6. DRAM roofline plot on NVIDIA Volta V100. Arrows point from 2J14->2J8-
>2J2. Problem sizes 2J14, 2J8, and 2J2 are represented by full, half, and open symbols,
respectively.

precision add, multiply, and fused multiply and add (FMA) operations. The data
movement across dram, and L2 and L1 caches is tracked for each kernel using
metrics dram bytes, lts t bytes, and l1tex t bytes, respectively. Metrics
necessary for roofline analysis are collected using List. 1.12.

Listing 1.12. Command to collect metrics for V100

1 nv-nsight -cu -cli --metrics $metrics --csv ./ test_snap.exe -ns 100 > metrics.
log

where, $metrics refers to the metrics discussed above. Compute and memory
bandwidth peaks were also obtained from the NSight Compute toolkit.

The DRAM memory roofline of V100, for the three problem sizes, is shown in
Fig. 6. Similar to the roofline plots from other GPUs, even for V100, all kernels
are positioned in the “memory-bound” regime and are close to the DRAM peak
bandwidth line. However, it is possible to observe smaller differences between
MI60 and V100 performance. For example, the roofline of compute Y, is com-
paratively farther away from the DRAM peak bandwidth line in Fig. 6 than in
Fig. 5. Also, the AI of this kernel is lower than that on MI60. This can poten-
tially be attributed to better communication optimization of TestSNAP kernels
on MI60.

This assessment can be made by comparing roofline differences of compute Y

for problem sizes 2J14 and 2J8 on these two machines. For problem size 2J8, not
as much data has to be moved across the memory levels, which pushes compute Y

into “compute-bound” region on MI60, whereas, on V100, the kernel still stays in
“memory-bound” region. This suggests that data movement was better for this
kernel on MI60 compared to that on V100. Not surprisingly, kernels that are not
heavily reliant only on data movement sit closer to the DRAM peak bandwidth

TestSNAP OpenMP on Intel, AMD, and NVIDIA GPUs 17

Fig. 7. Hierarchical roofline plot on Volta V100, for problem size 2J14. L1, L2, and
DRAM performance are represented by open, half, and full symbols, respectively.

line on V100 compared to MI60. The rooflines of kernels for problem size 2J2
are significantly different on the two machines. On MI60, all kernels are located
in the “compute-bound” region with relatively higher AI as shown in Fig. 5. In
contrast, all the kernels are located in the “memory-bound” region with poor
AI, as shown in Fig. 6. Looking at the raw metrics, we can observe that a lot
more data is moved across DRAM memory on V100 compared to MI60, and as
a consequence, the AI of 2J2 problem size is higher on MI60.

NSight Compute profiler provides an additional level of detail with the ability
to capture data transfer not only across DRAM but also across the L2 and L1
cache levels. This data movement can then be used to generate cache specific
AI numbers and plot roofline, which can pinpoint data reuse and kernel cache
level bounds. Note that the kernel performance is ultimately a minimum of the
AI obtained across all memory levels. Roofline models generated in this manner
are categorized as hierarchical rooflines.

The L1, L2, and DRAM specific, i.e., the hierarchical roofline plot of Test-
SNAP kernels, for problem size 2J14 on V100, is shown in Fig. 7. The noticeable
difference in the AI of compute Y indicates that the actual AI of this kernel is
not greater than one, but it is approximately 0.3. The proximity of L1 and L2
roofline symbols to the L2 cache peak bandwidth line suggests that compute Y

is L2 cache bound. Similarly, except for compute U, the performance of all other
profiled kernels is L2 cache bound. For all memory levels, roofline symbols of
compute U lie below the DRAM peak bandwidth roof, and therefore, it is con-
sidered DRAM bound.

The hierarchical roofline model provides additional details regarding the use
of memory hierarchy. In Fig. 7, for compute Y, compute dU, and compute dE,
there is a large shift in their AI between DRAM and L2-L1 rooflines. This is a
sign of high data reuse and good utilization of memory hierarchy. In contrast,

18 N. Mehta et al.

the shift in AI is almost negligible between L2 and L1 cache levels, representing
poor utilization of hierarchy, which results from these kernels having to access
data from the L2 cache to perform operations. For kernel compute U, because
data has to be accessed from DRAM, there is very little shift in AI across L1, L2,
and DRAM rooflines, indicating little use of memory hierarchy. The performance
of these kernels can be improved by having a larger bandwidth L2 cache and
DRAM memory and optimizing and reducing the data movement necessary to
execute the kernels.

5 Related work

Because of the early adoption of OpenMP directives, we were able to learn from
the experiences of Vergara Larrea, et al. [12] who used OpenMP 4.0 directives to
port codes to NVIDIA GPUs. The challenges of using OpenMP 4.5 for perfor-
mance portability has been documented in detail in work by Gayatri, et al. [13]
This study laid the groundwork for improving TestSNAP serial version using
OpenMP. From this study, it was observed that the collapse clause would be
better optimized using the column-major data storage format for 2D and higher
dimensional arrays. This early experience helped improve the overall perfor-
mance of TestSNAP on all tested GPUs. However, for the previous study, the
compiler was not as mature in supporting OpenMP offload features. This study
demonstrates performance analysis of a real-world application using a mature
compiler that is supported by two of the three major GPU architectures.

The roofline model was introduced by Williams, et al. [14] in 2009, which
made it possible for researchers to measure performance across multiple archi-
tectures objectively. Previous works, [15–17] in particular by Yang, et al. [18]
have been instrumental in developing the theory of the roofline model, tabulat-
ing the metrics, and providing a recipe to generate roofline plots. While roofline
models have been measured on all three GPU architectures separately, to the
best of our knowledge, this is the first time a single application has been analyzed
using the roofline model on three GPU architectures with no modifications to
the code. This is truly unique because it provides a common standard to measure
compiler and GPU architecture improvements.

6 Conclusions and future work

In this work, we show that it was possible to create a single source code imple-
mentation of TestSNAP using OpenMP 4.5 directives, which is portable across
NVIDIA, Intel, and AMD GPUs. To our knowledge, this is the first study the
same code was run on three GPU architectures without architecture specific
modifications using OpenMP. We also show that standard GPU optimizations
such as column-major data access patterns and exploiting more performance by
collapsing loops give performance benefits across all GPUs.

TestSNAP run- and grind-times show that the NVIDIA’s V100 GPU achieved
the highest speed-up with a grind-time of 0.0282 ms/atom-step compared to the

TestSNAP OpenMP on Intel, AMD, and NVIDIA GPUs 19

serial grind-time of 9.797 ms/atom-step on Intel’s Skylake architecture. However,
grind-times do not show a complete picture, and this is demonstrated by the
roofline models, which show that the TestSNAP kernels are memory-bound on
all three GPU architectures. Roofline plots of Gen9, MI60, and V100 indicate
that all significant kernels are bound by the DRAM bandwidth. These kernels
are positioned in the “memory-bound” region of the roofline plot, and therefore,
performance can be improved by changing the algorithm to increase the AI. The
ability to collect additional cache level, data movement metrics using CUDA’s
NSight Compute profiler meant that hierarchical roofline models could be built
for TestSNAP on V100 GPU.

As observed from the kernel roofline symbols, the majority of the TestSNAP
kernels are “memory-bound”. Ideally, kernels should be “compute-bound” and
should be closer to the peak compute capacity line. To achieve this, we will work
towards better memory access patterns and higher data reuse, particularly for
kernel compute Y, as it has the largest time footprint. Furthermore, we will also
work towards better cache utilization to improve the overall AI of the TestSNAP
code.

7 Acknowledgement

The TestSNAP version used in this work is a highly modified variant of the Test-
SNAP proxy app written by Dr. Aidan Thompson. We would like to thank Drs.
Danny Perez, Noah Reddell, and Nicholas Malaya for enabling us access and
providing compute resources on the DOE’s Cray Tulip machine. We gratefully
acknowledge the computing resources provided and operated by the Joint Lab-
oratory for System Evaluation (JLSE) at Argonne National Laboratory. This
research used resources of the Argonne Leadership Computing Facility, which
is a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH11357. We would also like to thank NERSC for providing us with compute
resources.

8 Reproducibility

The results shown in this work are reproducible by downloading the code from
the git repository: https://github.com/FitSNAP/TestSNAP/tree/OpenMP4.5.
However, as mentioned previously, if the code does not compile due to regres-
sion test failure, an alternate version of the TestSNAP code without the array
of structs is available from github repository: https://github.com/namehta4/
TestSNAP/tree/mod OpenMP4.5. Both these versions have similar compute per-
formance. The compiler flags used to compile TestSNAP OpenMP offload on
Intel Gen9, AMD MI60, and NVIDIA V100 are provided in listings 1.13, 1.14,
and 1.15, respectively.

Listing 1.13. Compiler flags for Intel Gen9
1 icx -O3 -fstrict -aliasing -Wno -openmp -target -Wall -Wno -unused -variable -std

=c++11 -qnextgen -fiopenmp -fopenmp -targets=spir64 *.cpp -o test_snap.
exe

20 N. Mehta et al.

Listing 1.14. Compiler flags for AMD MI60
1 clang++ -O3 -fstrict -aliasing -Wno -openmp -target -Wall -Wno -unused -variable

-std=c++11 -lm -fopenmp -fopenmp -targets=amdgcn -amd -amdhsa -Xopenmp -
target=amdgcn -amd -amdhsa -march=gfx906 -ffp -contract=fast *.cpp -o
test_snap.exe

Listing 1.15. Compiler flags for NVIDIA V100
1 clang++ -O3 -fstrict -aliasing -Wno -openmp -target -Wall -Wno -unused -variable

-std=c++11 -lm -fopenmp -fopenmp -targets=nvptx64 -nvidia -cuda --cuda -path=
$(CUDA_PATH) -I/$(CUDA_LIB) -ffp -contract=fast *.cpp -o test_snap.exe

TestSNAP OpenMP on Intel, AMD, and NVIDIA GPUs 21

References

1. H. Carter Edwards, C. R. Trott, and D. Sunderland. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. Journal of
Parallel and Distributed Computing, 74(12):3202 – 3216, 2014.

2. R. Reyes and V. Lomüller. SYCL: Single-source C++ accelerator programming.
In PARCO, pages 673–682, 2015.

3. ROCm HIP. ROCm HIP. https://github.com/ROCm-Developer-Tools/HIP.
4. S. Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Jour-

nal of Computational Physics, 117(1):1–19, 1995.
5. A.P. Bartók, M.C. Payne, R. Kondor, and G. Csányi. Gaussian Approximation

Potentials: The Accuracy of Quantum Mechanics, without the Electrons. Physical
Review Letters, 104(13):136403, 2010.

6. A. Thompson, L. Swiler, C. Trott, S. Foiles, and G. Tucker. Spectral neighbor anal-
ysis method for automated generation of quantum-accurate interatomic potentials.
Journal of Computational Physics, 285(1):316–330, 2015.

7. S. Plimpton, A. Kohlmeyer, A. Thompson, S. Moore, and R. Berger.
LAMMPS Stable Release 3 March 2020. https://zenodo.org/record/3726417#

.Xz2NMS2z3Vu, Mar 2020.
8. C. Trott, S. Hammond, and A. Thompson. SNAP: strong scaling high fidelity

molecular dynamics simulations on leadership-class computing platforms. In In-
ternational Supercomputing Conference, pages 19–34. Springer, 2014.

9. Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis and transformation. In CGO, pages 75–88, San Jose, CA, USA,
Mar 2004.

10. N. Ding and S. Williams. An instruction roofline model for GPUs. In 2019
IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems (PMBS), pages 7–18. IEEE, 2019.

11. D. Richards, O. Aaziz, J. Cook, J. Kuehn, S. Moore, D. Pruitt, C. Vaughan, and
The ECP Proxy App Team. Quantitative Performance Assessmentof Proxy Apps
and Parents. In LLNL-TR-809403. Report for ECP Proxy App Project Milestone
ADCD-504-9. Exascale Computing Project, Apr 2020.

12. L.V.G. Vergara, J. Wayne, M.G. Lopez, and O Hernández. Early Experiences
Writing Performance Portable OpenMP 4 Codes. In Proceedings of Cray User
Group Meeting, London, England. Cray User Group, 2016.

13. R. Gayatri, C. Yang, T. Kurth, and J. Deslippe. A Case Study for Performance
Portability Using OpenMP 4.5. In International Workshop on Accelerator Pro-
gramming Using Directives, 2018, pages 75–95. Springer, 2018.

14. S. Williams, A. Waterman, and D. Patterson. Roofline: an insightful visual perfor-
mance model for multicore architectures. Communications of the ACM, 52(4):65–
76, 2009.

15. C. Yang, T. Kurth, and S. Williams. Hierarchical Roofline analysis for GPUs:
Accelerating performance optimization for the NERSC-9 Perlmutter system. Con-
currency and Computation: Practice and Experience, page e5547, 2019.

16. E. Konstantinidis and Cotronis Y. A quantitative roofline model for GPU kernel
performance estimation using micro-benchmarks and hardware metric profiling.
Journal of Parallel and Distributed Computing, 107:37–56, 2017.

17. N. Ding and S. Williams. An Instruction Roofline Model for GPUs. In 2019
IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems (PMBS), pages 7–18, 2019.

22 N. Mehta et al.

18. C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo, B. Friesen,
B. Cook, D. Doerfler, L. Oliker, J. Deslippe, and S. Williams. An Empirical
Roofline Methodology for Quantitatively Assessing Performance Portability. In
2018 IEEE/ACM International Workshop on Performance, Portability and Pro-
ductivity in HPC (P3HPC), pages 14–23, 2018.

