
WACCPD@SC-19

PERFORMANCE OF 
THE RI-MP2 FORTRAN KERNEL OF GAMESS
ON GPUS VIA DIRECTIVE-BASED OFFLOADING 

WITH MATH LIBRARIES
erhtjhtyhy

JAEHYUK KWACK(1), COLLEEN BERTONI(1), BUU PHAM(2), AND JEFF LARKIN(3)

Argonne National Laboratory (1), Iowa State University(2), NVIDIA(3)

November 18, 2019, Denver, CO



2

§ GAMESS is a quantum chemistry software package designed for molecular simulations.
§ Written in Fortran and C++, and Fortran portion has limited possible options for GPU

computing.
§ FMO/RI-MP2 is one of the quantum chemistry algorithms of interest

– Algorithm of interest in GAMESS ECP problem

GAMESS AND RI-MP2 KERNEL

RI-MP2 equations:
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INPUTS FOR RI-MP2 KERNEL FROM GAMESS
§ The inputs includes

– the number of atomic orbital (N) and auxiliary 
(X) basis functions,

– the number of correlated occupied (O) and 
virtual (V) molecular orbitals, 

– the molecular orbital coefficients, 
– the molecular orbital energies, 
– 3-index integral matrix  B(X,V,O), 
– the calculated MP2 correlation energy for 

validation

N X V O Total size 
(GB)

c60 540 3960 360 120 1.37

w30 720 2520 570 120 1.38

w60 1440 5040 1140 240 11.03

Fullerene (c60)

Water cluster (w60)
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§ OLCF Summit
– IBM Power 9 processor

• ~540 GF/s/socket
• ~1.08 TF/s/node

– NVIDIA V100 GPU
• ~7.8 TF/s/socket
• ~46.8 TF/s/node

§ ALCF JLSE
– Intel Xeon Platinum 8180M Skylake 

processor
• ~ 2.05 TF/s/socket
• ~ 4.1 TF/s/node

COMPUTE RESOURCES

CPU 0

256 GB 
(DDR4)

Summit Node
(2) IBM Power9 + (6) NVIDIA Volta V100

(50 GB/s)NVLink2

GPU 0 GPU 1 GPU 2

16 GB
(HBM2)

16 GB
(HBM2)

16 GB
(HBM2)

0 (0-3)

8 (32-35)

16 (64-67)

1 (4-7)

9 (36-39)

17 (68-71)

2 (8-11)

10 (40-43)

18 (72-75)

3 (12-15)

11 (44-47)

19 (76-79)

4 (16-19)

12 (48-51)

20 (80-83)

5 (20-23)

13 (52-55)6 (24-27)

14 (56-59)7 (28-31)

15 (60-63)

CPU 1

256 GB 
(DDR4)

GPU 3 GPU 4 GPU 5

16 GB
(HBM2)

16 GB
(HBM2)

16 GB
(HBM2)

22 (88-91)

30 (120-123)

38 (152-155)

23 (92-95)

31 (124-127)

39 (156-159)

24 (96-99)

32 (128-131)

40 (160-163)

25 (100-103)

33 (132-135)

41 (164-167)

26 (104-107)

34 (136-139)

42 (168-171)

27 (108-111)

35 (140-143)28 (112-115)

36 (144-147)29 (116-119)

37 (148-151)

64 GB/s

170 GB/s 170 GB/s

(900 GB/s)

Credit: OLCF
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§ Compilers
– IBM XLF version 16.1.1-3 (OpenMP 4.5)
– Intel Fortran version 19.0.4.243
– PGI Fortran 19.4 (OpenACC 2.6)

§ Math libraries
– IBM ESSL version 6.2.0
– Intel MKL version 19.0.4.243
– CUDA version 10.1.168

• NVBLAS
• CUBLAS
• CUBLASXT

PROGRAMMING ENVIRONMENTS

cublasXTdgemm () tiling (credit: NVIDIA)



OFFLOADING THE RI-MP2 KERNEL
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subroutine RIMP2_ENERGY_WHOLE ( ... ) 
... 

!$omp threadprivate(E2_omp)
call OMP_SET_DYNAMIC(.FALSE.) 
nthreads=omp_get_max_threads() 

...
!$omp parallel NUM_THREADS(nthreads) default(none) shared(...) private(...) 
!$omp do schedule(DYNAMIC)
do-loop for JACT ! From 1 to NACT 

do-loop for IACT ! From 1 to JACT 
Set FAC 
call RIMP2_ENERGYIJ (B32(:,:,IACT), B32(:,:,JACT), FAC, E2, ...) 

enddo
enddo
!$omp end do 
!$omp atomic
E2 = E2 + E2_omp 
!$omp end parallel

end !subroutine RIMP2_ENERGY_WHOLE ( ... ) 

subroutine RIMP2_ENERGYIJ( ... ) 
... 

call DGEMM for BI(:,:), BJ(:,:), QVV(:,:) 
do-loop for IB ! From 1 to NVIR 

do-loop for IA ! From 1 to NVIR 
compute E2_t with QVV(:,:), eij(:,:), eab(:,:) 

enddo
enddo
E2 = E2 + FAC*E2_t

end !subroutine RIMP2_ENERGYIJ( ... ) 

RI-MP2 kernels with OpenMP threading
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subroutine RIMP2_ENERGY_WHOLE ( ... ) 
... 

!$omp target enter data map(alloc: QVV) map(to: eij,eab,B32) 
do-loop for JACT ! From 1 to NACT 

do-loop for IACT ! From 1 to JACT 
Set FAC 
call RIMP2_ENERGYIJ (B32(:,:,IACT), B32(:,:,JACT), FAC, E2, ...) 

enddo
enddo
!$omp target exit data map(release: QVV,eij,eab,B32) 
E2 = E2 + E2_omp 

end !subroutine RIMP2_ENERGY_WHOLE ( ... ) 

subroutine RIMP2_ENERGYIJ( ... ) 
... 

!$omp target data use_device_ptr(BI,BJ,QVV) 
call DGEMM for BI(:,:), BJ(:,:), QVV(:,:)
!$omp end target data 
!$omp target map(tofrom:E2_t)
!$omp teams distribute parallel do reduction(+:E2_t) collapse(2) 
do-loop for IB ! From 1 to NVIR 

do-loop for IA ! From 1 to NVIR 
compute E2_t with QVV(:,:), eij(:,:), eab(:,:) 

enddo
enddo
!$omp end teams distribute parallel do 
!$omp end target
E2 = E2 + FAC*E2_t

end !subroutine RIMP2_ENERGYIJ( ... ) 

RI-MP2 kernels with OpenMP offloading
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subroutine RIMP2_ENERGY_WHOLE ( ... ) 
... 

!$acc enter data create(QVV) copyin(eij,eab,b32) 
do-loop for JACT ! From 1 to NACT 

do-loop for IACT ! From 1 to JACT 
Set FAC 
call RIMP2_ENERGYIJ (B32(:,:,IACT), B32(:,:,JACT), FAC, E2, ...) 

enddo
enddo
!$acc wait
!$acc exit data delete(QVV,eij,eab,B32) 
E2 = E2 + E2_omp 

end !subroutine RIMP2_ENERGY_WHOLE ( ... ) 

subroutine RIMP2_ENERGYIJ( ... ) 
... 

!$acc host_data use_device(BI,BJ,QVV) 
call DGEMM for BI(:,:), BJ(:,:), QVV(:,:)
!$acc end host_data
!$acc parallel loop collapse(2) reduction(+:E2_t) default(present) 
do-loop for IB ! From 1 to NVIR 

do-loop for IA ! From 1 to NVIR 
compute E2_t with QVV(:,:), eij(:,:), eab(:,:) 

enddo
enddo
E2 = E2 + FAC*E2_t

end !subroutine RIMP2_ENERGYIJ( ... ) 

RI-MP2 kernels with OpenACC offloading
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USING NVBLAS, CUBLAS AND CUBLASXT
Initialization for 

cuBLAS and cuBLASXT

Finalization for 
cuBLAS and cuBLASXT

DGEMM calls 
for NVBLAS, cuBLAS, & 
cuBLASXT
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PERFORMANCE OF RI-MP2 KERNEL 
WITH OPENMP/OPENACC OFFLOADING

Wall time (s) Speedup

Serial w/ 1 core of P9 344.763 0.037 x

OpenMP + ESSL dgemm w/ 42 threads on 2 P9 12.623 1 x

OpenMP + MKL dgemm w/ 112 threads on 2 SKX 4.802 2.63 x

OpenMP offloading + nvblas dgemm on 1 V100 11.320 1.12 x

OpenMP offloading + cublas dgemm on 1 V100 9.282 1.36 x

OpenMP offloading + cublasXt dgemm on 1 V100 11.372 1.11 x

OpenACC offloading + cublas dgemm on 1 V100 12.176 1.04 x

OpenACC offloading + cublasXt dgemm on 1 V100 14.548 0.87 x

Input: c60.kern



OFFLOADING W/ NVBLAS
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OFFLOADING W/ CUBLAS
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OFFLOADING W/ CUBLASXT
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OFFLOADING 
THE RESTRUCTURED RI-MP2 KERNEL
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subroutine RIMP2_ENERGY_WHOLE ( ... ) 
... 

do-loop for JACT ! From 1 to NACT
call RIMP2_ENERGYIJ (B32(:,:,1:JACT), B32(:,:,JACT), E2, ...) 

enddo
... 
end !subroutine RIMP2_ENERGY_WHOLE ( ... ) 

subroutine RIMP2_ENERGYIJ( ... ) 
... 

call DGEMM for BI(:,:,1:JACT), BJ(:,:), QVV(:,:,1:JACT) 
... 

do-loop for IC ! From 1 to JACT 
Set FAC 
do-loop for IB ! From 1 to NVIR 

do-loop for IA ! From 1 to NVIR
compute E2_t with QVV(:,:,IC), eij(:,:), eab(:,:) 

enddo
enddo
E2 = E2 + FAC*E2_t 

enddo
...
end !subroutine RIMP2_ENERGYIJ( ... ) 

Restructured RI-MP2 kernels 
for fewer DGEMM calls with larger matrices
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PERFORMANCE OF 
THE RESTRUCTURED KERNEL

Wall time (s) Speedup

Serial w/ 1 core of P9 342.697 0.036 x

OpenMP + ESSL dgemm w/ 42 threads on 2 P9 12.231 1 x

OpenMP + MKL dgemm w/ 112 threads on 2 SKX 4.317 2.83 x

OpenMP offloading + nvblas dgemm on 1 V100 1.734 7.05 x

OpenMP offloading + cublas dgemm on 1 V100 1.983 6.17 x

OpenMP offloading + cublasXt dgemm on 1 V100 1.728 7.08 x

OpenACC offloading + cublas dgemm on 1 V100 1.905 6.42 x

OpenACC offloading + cublasXt dgemm on 1 V100 1.692 7.23 x

Input: c60.kern



RESTRUCTURED KERNEL W/ NVBLAS
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RESTRUCTURED KERNEL W/ CUBLAS
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RESTRUCTURED KERNEL W/ CUBLASXT
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RESTRUCTURED KERNEL ON MULTIPLE GPUS
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RESTRUCTURED KERNEL ON MULTIPLE GPUS
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RESTRUCTURED KERNEL ON MULTIPLE GPUS



CONCLUDING REMARKS



CONCLUDING REMARKS
§ RI-MP2 kernel from GAMESS application is re-written via OpenMP and OpenACC

offloading implementations with three GPU libraries (i.e., NVBLAS, cuBLAS, and 
cuBLASXT).

§ Restructuring the original kernels was required to get good performance on GPUs.

§ On a single NVIDIA V100 GPU, the directive-based offloading kernels show
– more than 7x speedup over 42 threaded code on IBM P9 processors, 
– around 200 x speedup over the serial run on IBM P9 processors.

§ On the same number of Summit nodes, the MPI+OpenMP offloading kernels show
– More than 40x speedup over the MPI + OpenMP threading kernels.
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CONCLUDING REMARKS
§ Observation

– CUBLAS makes a Fortran code messy, while NVBLAS provides standard BLAS 
calls that are simpler than CUBLAS.
• However, NVBLAS and CPU math library (e.g., ESSL, MKL, and ArmPL) use the 

same symbol (e.g., DGEMM ), and it may result in unexpected errors or lower 
performance on heterogeneous architecture.

§ Suggestion
– NVBLAS may provide alternative symbols in addition to standard BLAS symbols, for 

users to avoid some conflicts with CPU math library.
– OpenMP 5 declare variant directive may figure out this symbol conflict. 
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CONCLUDING REMARKS
§ A directive-based programming model will be a portable solution with good 

performance on coming pre-exascale/exascale DoE systems.
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Perlmutter @NERSC in 2020 (w/ NVIDIA GPUs)

Aurora @ALCF in 2021 (w/ Intel Xe GPUs) Frontier @OLCF in 2021 (w/ AMD GPUs)
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