
WACCPD@SC-19

PERFORMANCE OF
THE RI-MP2 FORTRAN KERNEL OF GAMESS
ON GPUS VIA DIRECTIVE-BASED OFFLOADING

WITH MATH LIBRARIES
erhtjhtyhy

JAEHYUK KWACK(1), COLLEEN BERTONI(1), BUU PHAM(2), AND JEFF LARKIN(3)

Argonne National Laboratory (1), Iowa State University(2), NVIDIA(3)

November 18, 2019, Denver, CO

2

§ GAMESS is a quantum chemistry software package designed for molecular simulations.
§ Written in Fortran and C++, and Fortran portion has limited possible options for GPU

computing.
§ FMO/RI-MP2 is one of the quantum chemistry algorithms of interest

– Algorithm of interest in GAMESS ECP problem

GAMESS AND RI-MP2 KERNEL

RI-MP2 equations:

3

INPUTS FOR RI-MP2 KERNEL FROM GAMESS
§ The inputs includes

– the number of atomic orbital (N) and auxiliary
(X) basis functions,

– the number of correlated occupied (O) and
virtual (V) molecular orbitals,

– the molecular orbital coefficients,
– the molecular orbital energies,
– 3-index integral matrix B(X,V,O),
– the calculated MP2 correlation energy for

validation

N X V O Total size
(GB)

c60 540 3960 360 120 1.37

w30 720 2520 570 120 1.38

w60 1440 5040 1140 240 11.03

Fullerene (c60)

Water cluster (w60)

4

§ OLCF Summit
– IBM Power 9 processor

• ~540 GF/s/socket
• ~1.08 TF/s/node

– NVIDIA V100 GPU
• ~7.8 TF/s/socket
• ~46.8 TF/s/node

§ ALCF JLSE
– Intel Xeon Platinum 8180M Skylake

processor
• ~ 2.05 TF/s/socket
• ~ 4.1 TF/s/node

COMPUTE RESOURCES

CPU 0

256 GB
(DDR4)

Summit Node
(2) IBM Power9 + (6) NVIDIA Volta V100

(50 GB/s)NVLink2

GPU 0 GPU 1 GPU 2

16 GB
(HBM2)

16 GB
(HBM2)

16 GB
(HBM2)

0 (0-3)

8 (32-35)

16 (64-67)

1 (4-7)

9 (36-39)

17 (68-71)

2 (8-11)

10 (40-43)

18 (72-75)

3 (12-15)

11 (44-47)

19 (76-79)

4 (16-19)

12 (48-51)

20 (80-83)

5 (20-23)

13 (52-55)6 (24-27)

14 (56-59)7 (28-31)

15 (60-63)

CPU 1

256 GB
(DDR4)

GPU 3 GPU 4 GPU 5

16 GB
(HBM2)

16 GB
(HBM2)

16 GB
(HBM2)

22 (88-91)

30 (120-123)

38 (152-155)

23 (92-95)

31 (124-127)

39 (156-159)

24 (96-99)

32 (128-131)

40 (160-163)

25 (100-103)

33 (132-135)

41 (164-167)

26 (104-107)

34 (136-139)

42 (168-171)

27 (108-111)

35 (140-143)28 (112-115)

36 (144-147)29 (116-119)

37 (148-151)

64 GB/s

170 GB/s 170 GB/s

(900 GB/s)

Credit: OLCF

5

§ Compilers
– IBM XLF version 16.1.1-3 (OpenMP 4.5)
– Intel Fortran version 19.0.4.243
– PGI Fortran 19.4 (OpenACC 2.6)

§ Math libraries
– IBM ESSL version 6.2.0
– Intel MKL version 19.0.4.243
– CUDA version 10.1.168

• NVBLAS
• CUBLAS
• CUBLASXT

PROGRAMMING ENVIRONMENTS

cublasXTdgemm () tiling (credit: NVIDIA)

OFFLOADING THE RI-MP2 KERNEL

7

subroutine RIMP2_ENERGY_WHOLE (...)
...

!$omp threadprivate(E2_omp)
call OMP_SET_DYNAMIC(.FALSE.)
nthreads=omp_get_max_threads()

...
!$omp parallel NUM_THREADS(nthreads) default(none) shared(...) private(...)
!$omp do schedule(DYNAMIC)
do-loop for JACT ! From 1 to NACT

do-loop for IACT ! From 1 to JACT
Set FAC
call RIMP2_ENERGYIJ (B32(:,:,IACT), B32(:,:,JACT), FAC, E2, ...)

enddo
enddo
!$omp end do
!$omp atomic
E2 = E2 + E2_omp
!$omp end parallel

end !subroutine RIMP2_ENERGY_WHOLE (...)

subroutine RIMP2_ENERGYIJ(...)
...

call DGEMM for BI(:,:), BJ(:,:), QVV(:,:)
do-loop for IB ! From 1 to NVIR

do-loop for IA ! From 1 to NVIR
compute E2_t with QVV(:,:), eij(:,:), eab(:,:)

enddo
enddo
E2 = E2 + FAC*E2_t

end !subroutine RIMP2_ENERGYIJ(...)

RI-MP2 kernels with OpenMP threading

8

subroutine RIMP2_ENERGY_WHOLE (...)
...

!$omp target enter data map(alloc: QVV) map(to: eij,eab,B32)
do-loop for JACT ! From 1 to NACT

do-loop for IACT ! From 1 to JACT
Set FAC
call RIMP2_ENERGYIJ (B32(:,:,IACT), B32(:,:,JACT), FAC, E2, ...)

enddo
enddo
!$omp target exit data map(release: QVV,eij,eab,B32)
E2 = E2 + E2_omp

end !subroutine RIMP2_ENERGY_WHOLE (...)

subroutine RIMP2_ENERGYIJ(...)
...

!$omp target data use_device_ptr(BI,BJ,QVV)
call DGEMM for BI(:,:), BJ(:,:), QVV(:,:)
!$omp end target data
!$omp target map(tofrom:E2_t)
!$omp teams distribute parallel do reduction(+:E2_t) collapse(2)
do-loop for IB ! From 1 to NVIR

do-loop for IA ! From 1 to NVIR
compute E2_t with QVV(:,:), eij(:,:), eab(:,:)

enddo
enddo
!$omp end teams distribute parallel do
!$omp end target
E2 = E2 + FAC*E2_t

end !subroutine RIMP2_ENERGYIJ(...)

RI-MP2 kernels with OpenMP offloading

9

subroutine RIMP2_ENERGY_WHOLE (...)
...

!$acc enter data create(QVV) copyin(eij,eab,b32)
do-loop for JACT ! From 1 to NACT

do-loop for IACT ! From 1 to JACT
Set FAC
call RIMP2_ENERGYIJ (B32(:,:,IACT), B32(:,:,JACT), FAC, E2, ...)

enddo
enddo
!$acc wait
!$acc exit data delete(QVV,eij,eab,B32)
E2 = E2 + E2_omp

end !subroutine RIMP2_ENERGY_WHOLE (...)

subroutine RIMP2_ENERGYIJ(...)
...

!$acc host_data use_device(BI,BJ,QVV)
call DGEMM for BI(:,:), BJ(:,:), QVV(:,:)
!$acc end host_data
!$acc parallel loop collapse(2) reduction(+:E2_t) default(present)
do-loop for IB ! From 1 to NVIR

do-loop for IA ! From 1 to NVIR
compute E2_t with QVV(:,:), eij(:,:), eab(:,:)

enddo
enddo
E2 = E2 + FAC*E2_t

end !subroutine RIMP2_ENERGYIJ(...)

RI-MP2 kernels with OpenACC offloading

10

USING NVBLAS, CUBLAS AND CUBLASXT
Initialization for

cuBLAS and cuBLASXT

Finalization for
cuBLAS and cuBLASXT

DGEMM calls
for NVBLAS, cuBLAS, &
cuBLASXT

11

PERFORMANCE OF RI-MP2 KERNEL
WITH OPENMP/OPENACC OFFLOADING

Wall time (s) Speedup

Serial w/ 1 core of P9 344.763 0.037 x

OpenMP + ESSL dgemm w/ 42 threads on 2 P9 12.623 1 x

OpenMP + MKL dgemm w/ 112 threads on 2 SKX 4.802 2.63 x

OpenMP offloading + nvblas dgemm on 1 V100 11.320 1.12 x

OpenMP offloading + cublas dgemm on 1 V100 9.282 1.36 x

OpenMP offloading + cublasXt dgemm on 1 V100 11.372 1.11 x

OpenACC offloading + cublas dgemm on 1 V100 12.176 1.04 x

OpenACC offloading + cublasXt dgemm on 1 V100 14.548 0.87 x

Input: c60.kern

OFFLOADING W/ NVBLAS

12

OFFLOADING W/ CUBLAS

13

OFFLOADING W/ CUBLASXT

14

OFFLOADING
THE RESTRUCTURED RI-MP2 KERNEL

16

subroutine RIMP2_ENERGY_WHOLE (...)
...

do-loop for JACT ! From 1 to NACT
call RIMP2_ENERGYIJ (B32(:,:,1:JACT), B32(:,:,JACT), E2, ...)

enddo
...
end !subroutine RIMP2_ENERGY_WHOLE (...)

subroutine RIMP2_ENERGYIJ(...)
...

call DGEMM for BI(:,:,1:JACT), BJ(:,:), QVV(:,:,1:JACT)
...

do-loop for IC ! From 1 to JACT
Set FAC
do-loop for IB ! From 1 to NVIR

do-loop for IA ! From 1 to NVIR
compute E2_t with QVV(:,:,IC), eij(:,:), eab(:,:)

enddo
enddo
E2 = E2 + FAC*E2_t

enddo
...
end !subroutine RIMP2_ENERGYIJ(...)

Restructured RI-MP2 kernels
for fewer DGEMM calls with larger matrices

17

PERFORMANCE OF
THE RESTRUCTURED KERNEL

Wall time (s) Speedup

Serial w/ 1 core of P9 342.697 0.036 x

OpenMP + ESSL dgemm w/ 42 threads on 2 P9 12.231 1 x

OpenMP + MKL dgemm w/ 112 threads on 2 SKX 4.317 2.83 x

OpenMP offloading + nvblas dgemm on 1 V100 1.734 7.05 x

OpenMP offloading + cublas dgemm on 1 V100 1.983 6.17 x

OpenMP offloading + cublasXt dgemm on 1 V100 1.728 7.08 x

OpenACC offloading + cublas dgemm on 1 V100 1.905 6.42 x

OpenACC offloading + cublasXt dgemm on 1 V100 1.692 7.23 x

Input: c60.kern

RESTRUCTURED KERNEL W/ NVBLAS

18

RESTRUCTURED KERNEL W/ CUBLAS

19

RESTRUCTURED KERNEL W/ CUBLASXT

20

RESTRUCTURED KERNEL ON MULTIPLE GPUS

22

RESTRUCTURED KERNEL ON MULTIPLE GPUS

23

RESTRUCTURED KERNEL ON MULTIPLE GPUS

CONCLUDING REMARKS

CONCLUDING REMARKS
§ RI-MP2 kernel from GAMESS application is re-written via OpenMP and OpenACC

offloading implementations with three GPU libraries (i.e., NVBLAS, cuBLAS, and
cuBLASXT).

§ Restructuring the original kernels was required to get good performance on GPUs.

§ On a single NVIDIA V100 GPU, the directive-based offloading kernels show
– more than 7x speedup over 42 threaded code on IBM P9 processors,
– around 200 x speedup over the serial run on IBM P9 processors.

§ On the same number of Summit nodes, the MPI+OpenMP offloading kernels show
– More than 40x speedup over the MPI + OpenMP threading kernels.

25

CONCLUDING REMARKS
§ Observation

– CUBLAS makes a Fortran code messy, while NVBLAS provides standard BLAS
calls that are simpler than CUBLAS.
• However, NVBLAS and CPU math library (e.g., ESSL, MKL, and ArmPL) use the

same symbol (e.g., DGEMM), and it may result in unexpected errors or lower
performance on heterogeneous architecture.

§ Suggestion
– NVBLAS may provide alternative symbols in addition to standard BLAS symbols, for

users to avoid some conflicts with CPU math library.
– OpenMP 5 declare variant directive may figure out this symbol conflict.

26

CONCLUDING REMARKS
§ A directive-based programming model will be a portable solution with good

performance on coming pre-exascale/exascale DoE systems.

27

Perlmutter @NERSC in 2020 (w/ NVIDIA GPUs)

Aurora @ALCF in 2021 (w/ Intel Xe GPUs) Frontier @OLCF in 2021 (w/ AMD GPUs)

ACKNOWLEDGEMENT
§ This work was supported by

– the Argonne Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC02-06CH11357,

– and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the
U.S. DOE Office of Science and the National Nuclear Security Administration,

– and by a grant from the DOE Exascale Computing Project (ECP), administered by the
Ames Laboratory.

§ We also gratefully acknowledge the computing resources provided and operated by the
Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory, and the
Oak Ridge Leadership Computing Facility (OLCF), which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

§ We would like to thank the ECP and OLCF for organizing the 2019 ECP/OLCF OpenMP
Hackathon in Knoxville, TN, and give special thanks our mentors, Dmytro Bykov from
OLCF and Vivek Kale from BNL for their contributions to this work.

28

THANK YOU!

