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Introduction
§ Achieving high performance and performance portability on 

heterogeneous systems is challenging. 

§ Test Application: Locally Optimal Block Preconditioned Conjugate 
Gradient (LOBPCG)
§ Popular and commonly used, preconditioning can be done!
§ Pretty complex and challenging one!

§ Baseline version: OpenMP/OpenACC version for CPUs using LAPACK 
and BLAS routines.

§ Can we port it to GPU using directive based programming model and 
achieve desired performance? 2



Motivation

§ All DOE’s future planned systems will be equipped with GPUs:
§ NERSC - Perlmutter (AMD CPU + NVIDIA GPU)
§ ALCF – Aurora (Intel CPU + Intel XE Accelerator) 
§ OLCF – Frontier (AMD CPU+ AMD GPU)

§ Portability
§ OpenMP and OpenACC provide pragmas to offload computations to 

device (i.e. GPUs)

§ Efficient use of accelerators is desirable to exploit the full 
capabilities of these future DOE ASCR systems .

3



LOBPCG 
Pseudocode
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XTY operation - ~31% Total Exe. Time

XY operation - ~6% Total Exe. Time

SPMM operation – ~56% Total Exe. Time

Application Kernels - ~8% Total Exe. Time



LOBPCG Porting Strategy: Initial Attempt

§ Use optimized CUDA library routines for the most 
expensive kernels.
§ cblas_dgemm à cublasDgemm
§ SpMM à cusparseDcsrmm

§ Then started porting other application kernels using 
directives.

§ Creating target data region to copy necessary data 
to/from GPU
§ #pragma omp target data map(to: list) map(from: list) map(tofrom: list)
§ #pragma acc data copy(..) copyin(..) copyout(..)

§ Running slower!!! 
§ 1GPU+1CPU was 0.92x slower compared to 1CPU.
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LOBPCG Porting Strategy: Device Pointer
§ nvprof showing huge data movement between 

CPU and GPU.
§ ~97% of total execution time are spent on data movement

§ Need to minimize data movement between 
CPU & GPU.

§ Two useful clauses that allow 
OpenMP/OpenACC kernels to access data that 
is already allocated on GPU:
§ is_device_ptr(list) à OpenMP
§ deviceptr(list) à OpenACC
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LOBPCG Porting Strategy: Impact of Device Pointer

7

cuBLAS call

D2H transfer

H2D & D2H transfer

Launching App. Kernel

Definition of mat_mult()

cuBLAS call

Launching App. Kernel
Definition of mat_mult()

Operation:
R = X * lambda
newX = X .* R



LOBPCG Porting Strategy: 
Non Portable Routines

§ We couldn’t run completely on 
GPU because there are host only  
LAPACK routines:

§ LAPACKE_dpotrf()
§ LAPACKE_dsygv()
§ LAPACKE_dgetrf()
§ LAPACKE_dgetri()

§ 10 small matrices are moved 
between CPU & GPU in every 
iteration.
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LOBPCG Data 
Flow Graph



Test matrices

Matrix Dimensions % of Non zeros Size (GB) Domain

Queen_4147 4.1M 0.0010 2.02 3D Structural Problem

HV15R 2.0M 0.0070 3.41 Computational Fluid 
Dynamics

Nm7 5.0M 0.0026 7.79 Nuclear Physics

Nm8 7.6M 0.0010 7.14 Nuclear Physics
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§ Square Matrix
§ Different domains and different sparsity patterns



Evaluation Platform

Cori-GPU Summit
Processor Intel Skylake IBM Power9

CPUs : GPUs 2:8 2:6
CPU-GPU Interconnect PCIe 3.0, Peak BW 16 GB/s NVLink2, Peak BW 50 GB/s

§ CPU vs GPU Test Configuration:
§ CPU : One Socket, One thread per core.
§ GPU: One Socket (One thread per core) + One GPU.
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§ Cori-GPU and Summit
§ Equipped with NVIDIA Volta V100 GPU 



Evaluation – LOBPCG
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§ Variable CPU performance:
§ Custom CSR based SpMM kernel runs 1.5-3X slower in OpenACC CPU version compared to OpenMP CPU version

Similar GPU performance with OpenMP and OpenACC 
using PGI (OpenACC), Clang and IBM XL (OpenMP) 
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Evaluation – CPU vs GPU performance

12

LOBPCG OpenMP CPU vs OpenMP GPU  execution time 
breakdown on Cori-GPU for Nm7 matrix
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Evaluation – Putting All Matrices Together
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LOBPCG GPU vs CPU speedup on Cori-GPU
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What is next?
§ What if the sparse or any other matrix doesn’t fit in GPU memory (say 

sparse matrix > 16GB)?
§ This is a common issue for large-scale scientific computing/data science applications.

§ Is it useful to use GPU for large matrices?

§ Possible solutions:
§ Matrix tiling
§ Unified memory – Original code with no tiling. 
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Tiling Matrices

§ Utilizing GPU memory properly

§ Tiling matrices for each operation
• Overlapping data movement with computation

§ We tested with two dominant kernels in LOBPCG:
• cusparseDcsrmm (SpMM operartion)
• cublasDgemm (Inner product operation)
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Tiling SPMM (cusparseDcsrmm) Kernel
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YX[i-th tile]temp

GPU

Z[i-th tile] CPU

Move each block rows to GPU



Tiling Inner Product (cublasDgemm) Kernel
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Evaluation - Inner Product (cublasDgemm) Kernel
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§ Total Memory footprint: 51.54 GB

§ Main Difference: Interconnects between CPU 
and GPU.  We measured the following BW in 
this test application:
§ Cori-GPU – HtoD bandwidth 4 GB/s
§ Summit – HtoD bandwidth 13 GB/s

§ Data movement time > Compute time

§ We will always perform worse compared to 
matrices completely resident in GPU memory for 
this kernel
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Evaluation – SPMM Tiling
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§ Total Memory footprint: 35.1 GB

§ Compute time > Data movement time

§ Data movement time could be hidden behind 
compute time by choosing a clever prefetching 
scheme such as – using 
cudaMemPrefetchAsync().

§ If we could do this prefetching then we would 
nearly obtain the same throughput compared to 
matrices resident on GPU. 
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Evaluation – SPMM (Small Matrix)
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§ Total Memory footprint: 11.7 GB
§ Unified memory doesn’t hurt the performance.
§ This is a productivity win for application programmer: one pointer instead of separate 

host and device pointer. 20
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Evaluation – SPMM (Big Matrix)
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§ Total Memory footprint: 35.1 GB
§ Unified memory gives bad and unpredictable performance.
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XY (cublasDgemm) Unified Memory – nvprof Output
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§ Summit GPU page faults takes ~30X longer!! 

§ Currently we are in discussion with NVIDIA for understanding 
the performance on Summit.

Cori-GPU Summit

GPU page fault group 10.668 sec 313.436 Sec

H2D data transfer 32 GB 32 GB

D2H data transfer 16.64 GB 16.64 GB



Conclusion and Future Work

§ We have successfully mixed OpenMP & OpenACC target offloading 
constructs and CUBLAS library functions.
§ 2.8X – 4.3X speedup over an optimized CPU implementation.

§ We have demonstrated that GPUs can accelerate large matrix problems.
§ Tiling is more effective than Unified Memory!

§ Future works:
§ Tiling full solver.
§ Finding optimal data movement scheme.
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