
Evaluation of Directive-based GPU Programming
Models on a Block Eigensolver with Consideration of

Large Sparse Matrices

Fazlay Rabbi1, Christopher S. Daley2, Hasan Metin Aktulga1 and Nicholas J. Wright2

1Michigan State University, East Lansing MI, USA

2Lawrence Berkeley National Laboratory, Berkeley CA, USA

{rabbimd, hma}@msu.edu, {csdaley, njwright}@lbl.gov

WACCPD @ SC 2019 Denver, CO

Introduction
§ Achieving high performance and performance portability on

heterogeneous systems is challenging.

§ Test Application: Locally Optimal Block Preconditioned Conjugate
Gradient (LOBPCG)
§ Popular and commonly used, preconditioning can be done!
§ Pretty complex and challenging one!

§ Baseline version: OpenMP/OpenACC version for CPUs using LAPACK
and BLAS routines.

§ Can we port it to GPU using directive based programming model and
achieve desired performance? 2

Motivation

§ All DOE’s future planned systems will be equipped with GPUs:
§ NERSC - Perlmutter (AMD CPU + NVIDIA GPU)
§ ALCF – Aurora (Intel CPU + Intel XE Accelerator)
§ OLCF – Frontier (AMD CPU+ AMD GPU)

§ Portability
§ OpenMP and OpenACC provide pragmas to offload computations to

device (i.e. GPUs)

§ Efficient use of accelerators is desirable to exploit the full
capabilities of these future DOE ASCR systems .

3

LOBPCG
Pseudocode

4

XTY operation - ~31% Total Exe. Time

XY operation - ~6% Total Exe. Time

SPMM operation – ~56% Total Exe. Time

Application Kernels - ~8% Total Exe. Time

LOBPCG Porting Strategy: Initial Attempt

§ Use optimized CUDA library routines for the most
expensive kernels.
§ cblas_dgemm à cublasDgemm
§ SpMM à cusparseDcsrmm

§ Then started porting other application kernels using
directives.

§ Creating target data region to copy necessary data
to/from GPU
§ #pragma omp target data map(to: list) map(from: list) map(tofrom: list)
§ #pragma acc data copy(..) copyin(..) copyout(..)

§ Running slower!!!
§ 1GPU+1CPU was 0.92x slower compared to 1CPU.

Full Code 5

CPU

GPU

CPU

H2D Transfer

D2H Transfer

LOBPCG Porting Strategy: Device Pointer
§ nvprof showing huge data movement between

CPU and GPU.
§ ~97% of total execution time are spent on data movement

§ Need to minimize data movement between
CPU & GPU.

§ Two useful clauses that allow
OpenMP/OpenACC kernels to access data that
is already allocated on GPU:
§ is_device_ptr(list) à OpenMP
§ deviceptr(list) à OpenACC

6

CPU

GPU

CPU

H2D Transfer

D2H Transfer

Full Code

LOBPCG Porting Strategy: Impact of Device Pointer

7

cuBLAS call

D2H transfer

H2D & D2H transfer

Launching App. Kernel

Definition of mat_mult()

cuBLAS call

Launching App. Kernel
Definition of mat_mult()

Operation:
R = X * lambda
newX = X .* R

LOBPCG Porting Strategy:
Non Portable Routines

§ We couldn’t run completely on
GPU because there are host only
LAPACK routines:

§ LAPACKE_dpotrf()
§ LAPACKE_dsygv()
§ LAPACKE_dgetrf()
§ LAPACKE_dgetri()

§ 10 small matrices are moved
between CPU & GPU in every
iteration.

8

LOBPCG Data
Flow Graph

Test matrices

Matrix Dimensions % of Non zeros Size (GB) Domain

Queen_4147 4.1M 0.0010 2.02 3D Structural Problem

HV15R 2.0M 0.0070 3.41 Computational Fluid
Dynamics

Nm7 5.0M 0.0026 7.79 Nuclear Physics

Nm8 7.6M 0.0010 7.14 Nuclear Physics

9

§ Square Matrix
§ Different domains and different sparsity patterns

Evaluation Platform

Cori-GPU Summit
Processor Intel Skylake IBM Power9

CPUs : GPUs 2:8 2:6
CPU-GPU Interconnect PCIe 3.0, Peak BW 16 GB/s NVLink2, Peak BW 50 GB/s

§ CPU vs GPU Test Configuration:
§ CPU : One Socket, One thread per core.
§ GPU: One Socket (One thread per core) + One GPU.

10

§ Cori-GPU and Summit
§ Equipped with NVIDIA Volta V100 GPU

Evaluation – LOBPCG

11

4.87

2.25

9.82

5.38

0.77 0.74 0.76 0.74

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Op
en

AC
C

Op
en

M
P

Op
en

AC
C

Op
en

M
P

Op
en

AC
C

Op
en

M
P

Op
en

AC
C

Op
en

M
P

Cori-GPU	(CPU) Summit	(CPU) Cori-GPU	(CPU+GPU) Summit	(CPU+GPU)

Ti
m
e	
(s
ec
)

LOBPCG performance on Cori-GPU and Summit for Nm7 Matrix

Lo
w

er
 is

 b
et

te
r

§ Variable CPU performance:
§ Custom CSR based SpMM kernel runs 1.5-3X slower in OpenACC CPU version compared to OpenMP CPU version

Similar GPU performance with OpenMP and OpenACC
using PGI (OpenACC), Clang and IBM XL (OpenMP)

compiler

0.74

2.25

0

0.5

1

1.5

2

2.5

3

3.5

OpenMP+GPU OpenMP+CPU

Ti
m
e	
(s
ec
)

Library	kernels CUDA	API	calls Application	kernels

Evaluation – CPU vs GPU performance

12

LOBPCG OpenMP CPU vs OpenMP GPU execution time
breakdown on Cori-GPU for Nm7 matrix

Lo
w

er
 is

 b
et

te
r

Evaluation – Putting All Matrices Together

3.36

4.31

3.05
2.80

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Queen_4147 HV15R Nm7 Nm8

Sp
ee
du

p

13

LOBPCG GPU vs CPU speedup on Cori-GPU

H
ig

he
r i

s b
et

te
r

What is next?
§ What if the sparse or any other matrix doesn’t fit in GPU memory (say

sparse matrix > 16GB)?
§ This is a common issue for large-scale scientific computing/data science applications.

§ Is it useful to use GPU for large matrices?

§ Possible solutions:
§ Matrix tiling
§ Unified memory – Original code with no tiling.

14

Tiling Matrices

§ Utilizing GPU memory properly

§ Tiling matrices for each operation
• Overlapping data movement with computation

§ We tested with two dominant kernels in LOBPCG:
• cusparseDcsrmm (SpMM operartion)
• cublasDgemm (Inner product operation)

15

Tiling SPMM (cusparseDcsrmm) Kernel

Tile0

Tile1

Tile2

…
…
…

Tilen-1

Y ZX

b b

16

YX[i-th tile]temp

GPU

Z[i-th tile] CPU

Move each block rows to GPU

Tiling Inner Product (cublasDgemm) Kernel

tile0

tile1

tile2

tilen-1

Y

til
e0

til
e1

til
e2

til
en

-1

XT

devZ

cublasDgemm call	on	each	tile

Accumulating	partial	
output	in	devZ on	GPU

b

b

0 1 2 …
.

…
.

…
.

n-
1

b

b

17

𝑍 = 	𝑋%𝑌

Evaluation - Inner Product (cublasDgemm) Kernel

18

§ Total Memory footprint: 51.54 GB

§ Main Difference: Interconnects between CPU
and GPU. We measured the following BW in
this test application:
§ Cori-GPU – HtoD bandwidth 4 GB/s
§ Summit – HtoD bandwidth 13 GB/s

§ Data movement time > Compute time

§ We will always perform worse compared to
matrices completely resident in GPU memory for
this kernel

0.36 0.42

11.98

3.82

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Cori-GPU Summit

Ti
m
e	
(s
ec
)

CUDA	memcpy	HtoD	time Compute	 time

Lo
w

er
 is

 b
et

te
r

Evaluation – SPMM Tiling

19

§ Total Memory footprint: 35.1 GB

§ Compute time > Data movement time

§ Data movement time could be hidden behind
compute time by choosing a clever prefetching
scheme such as – using
cudaMemPrefetchAsync().

§ If we could do this prefetching then we would
nearly obtain the same throughput compared to
matrices resident on GPU.

18.15 18.06

7.24
2.62

0

5

10

15

20

25

30

Cori-GPU Summit

Ti
m
e	(
se
c)

Compute	 time CUDA	memcpy	time

Lo
w

er
 is

 b
et

te
r

Evaluation – SPMM (Small Matrix)

4.15

4.76

2.81

4.34

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Tiling Unified	Memory Tiling Unified	Memory

Cori	GPU Summit

Ti
m
e	
(s
ec
)

§ Total Memory footprint: 11.7 GB
§ Unified memory doesn’t hurt the performance.
§ This is a productivity win for application programmer: one pointer instead of separate

host and device pointer. 20

Lo
w

er
 is

 b
et

te
r

Evaluation – SPMM (Big Matrix)

25.39

74.56

20.68

997.68

1.00

10.00

100.00

1000.00

Tiling Unified	Memory Tiling Unified	Memory

Cori	GPU Summit

Ti
m
e	
(s
ec
)

§ Total Memory footprint: 35.1 GB
§ Unified memory gives bad and unpredictable performance.

21

Lo
w

er
 is

 b
et

te
r 2.15X

49X

XY (cublasDgemm) Unified Memory – nvprof Output

22

§ Summit GPU page faults takes ~30X longer!!

§ Currently we are in discussion with NVIDIA for understanding
the performance on Summit.

Cori-GPU Summit

GPU page fault group 10.668 sec 313.436 Sec

H2D data transfer 32 GB 32 GB

D2H data transfer 16.64 GB 16.64 GB

Conclusion and Future Work

§ We have successfully mixed OpenMP & OpenACC target offloading
constructs and CUBLAS library functions.
§ 2.8X – 4.3X speedup over an optimized CPU implementation.

§ We have demonstrated that GPUs can accelerate large matrix problems.
§ Tiling is more effective than Unified Memory!

§ Future works:
§ Tiling full solver.
§ Finding optimal data movement scheme.

23

24

