
Accelerating the
Performance of Modal
Aerosol Module (MAM)

of E3SM Using OpenACC
Hongzhang Shan1), Zhengji Zhao2),

and Marcus Wagner3)

1) Lawrence Berkeley National Laboratory,
2) National Energy Scientific Computing Center

3) Cray, Inc

WACCPD 19, Denver CO

Outline

● Introduction

● MAM Algorithms and Kernels

● Offloading Four Representative Kernels in MAM to GPU Using
OpenACC directives

● MAM Performance on Summit

● Summary and Conclusion

Introduction

● Energy Exascale Earth System Model (E3SM) is a state-of-the-art
earth system simulation code
○ It has a large code base with over a million lines of Fortran code

○ Production code are currently optimized for advanced CPU systems

● Making effective use of GPUs, however, remains a challenge

● In this work, using the modal aerosol module (MAM) of E3SM as a
driving example, we investigated how to effectively offload
computational tasks to GPUs

● We chose to work with OpenACC directives

MAM Algorithms and Kernels

- 4 -

Modal Aerosol Module (MAM) of E3SM

● E3SM was developed to reliably project decade-to-century scale changes that
could critically impact the U.S. energy sector. It combined the atmosphere,
ocean, land, river, ice, and other components.

● The computation of the atmosphere component is based upon the Spectral
Element (SE) numerical discretization of underlying PDEs for stratified,
hydrostatic fluid dynamics on rotating spheres.

● MAM is a submodule from the atmosphere component that plays an important
role in the climate system by influencing the Earth's radiation budgets and
modifying cloud properties. It predicts the mass and mixing ratios of cloud
liquid and cloud ice, diagnoses the mass and mixing ratios of rain and snow,
and handles complicated conversions between cloud hydrometeors.

MAM in E3SM

● E3SM models the Earth with a cubed-sphere grid (6 faces) as shown in Fig. a).
● The resolution of the meshes is defined as the number of spectral elements ne along the

edge of each cube face. (6ne2 elements total in the mesh)
● Each element contains a np*np tensor product of Gauss-Lobatto-Legendre (GLL)

points depicted in Figure b), the number of unique points (physics columns)
● There exists another dimension, namely the vertical direction (except the sphere faces).
● Computations between physical columns are independent

a) b)

MAM in E3SM

• In the parallel implementation physical columns are distributed among the
processes based on a set of load balancing strategies.

• To get better caching effects, all the columns assigned to a process will be
grouped in a data structure called a chunk.

• In each chunk, a maximum number of columns PCOL is specified at
compilation time.

do j = 1, nchunks !number of chunks
 do k = 1, nlev !vertical levels, may have data dependency
 do i = 1, ncols(j) !number of columns in chunk j
 !sum(ncols(j) = total physical columns
 computation_kernels() !many different kernels
 enddo
 enddo
enddo

Loop structure for computations

Experiment Configuration

- 8 -

Experiment System – Summit at ORNL

o Theoretical peak ~200 PF (dp),

o Each Summit node has two IBM Power9
processors with six Nvidia V100 GPUs.

o Power9 CPUs are connected with GPUs
through dual NVLINK

o 512 GB of DDR4 memory for Power9
CPUS and 96 GB of HBM for GPUs.

o Each Nvidia V100 has 80 SMs, 16 GB of
HBM, and a 6 MB L2 cache.

o Each SM contains 64 FP32, 64 INT32, 32
FP64 cores; partitioned to four processing
blocks, each with a warp scheduler.

Experiment Setup

● E3SM: https://github.com/E3SM-Project/E3SM.git, branch shz0116/cam/cam_openacc

● We used the PGI compiler version 19.4, Spectrum MPI version
10.3.0.1, and CUDA 10.1.168

● Other libraries used in the E3SM code included NETCDF 4.6.1,
NETCDF-FORTRAN 4.4.4, ESSL 6.1.0 , Parallel NETCDF 1.8.1, and
HDF5 1.10.3

● The data set for E3SM is SMS_PS_Ld5.ne16_ne16.FC5AV1C-L,
which stresses the atmosphere physics. Here, ne16 ne16 defines the
cubed sphere grid resolution

Offloading Four Representative Kernels in
MAM to GPU Using OpenACC directives

- 11 -

Offloading MAM Kernels to GPUs

● Data transfer was not trivial in MAM
○ MAM has a large code base with tens of thousands of lines of source code

○ MAM does checkpointing with various I/O operations scattered all over the code

○ an excessive number of temporary subroutines or function variables need to be
promoted and explicitly allocated on the GPU memory as well

● MAM has a flat profile, its run time is distributed across many functions,
meaning we could not focus on just a couple of loops

● The programming effort needed to optimize different kernels also varies
significantly by kernel. Some required a significant code refactoring

Kernel: subgrid_mean_updraft

 1 !$acc parallel loop collapse(2) copyin(wsig,w0) copyout(ww) private(zz,wa)
 2 do k = 1, pver
 3 do i = 1, ncol
 4 sigma = max(0.001_r8, wsig(i,k))
 5 wlarge = w0(i,k)
 6 xx = 6._r8 * sigma / nbin
 7 do ibin = 1, nbin !constant nbin=50
 8 yy = wlarge - 3._r8*sigma + 0.5*xx
 9 yy = yy + (ibin-1)*xx
 10 zz(ibin) = yy * exp(-1.*(yy-wlarge)**2/(2*sigma**2))/(sigma*sqrt(2*pi))*xx
 11 if (zz(ibin) .gt. 0._r8) then
 12 wa(ibin) = zz(ibin)
 13 else
 14 wa(ibin) = 0._r8
 15 endif
 16 end do
 17 sum_wa = sum(wa(:))
 18 if (sum_wa .gt. 0._r8) then
 19 ww(i,k) = sum_wa
 20 else
 21 ww(i,k) = 0.001_r8
 22 end if
 23 enddo
 24 enddo - calculates the mean updraft velocity

Kernel Performance on a Summit Node

Kernel: hetfrz_classnuc_cam_calc

 1 !$acc declare create(ncnst, nmodes, ...) !create module variables on device
 2 !$acc update device(ncnst, nmodes, ...)
 3 ...
 4 !$acc enter data create(total_aer_num, ...)
 5 ...
 6 !$acc parallel loop collapse(2) private(fn), copyin(t,pmid) &
 7 !$acc& copyout(frzbccnt,...) default(present)
 8 do k = top_lev, pver
 9 do i = 1, ncol
 10 if (t(i,k) .gt. 235.15_r8 .and. t(i,k) .lt. 269.15_r8) then

 35 end if
 36 end do
 37 end do
 38 ...
 39 !$acc exit data delete(total_aer_num, ...)

- calculates the heterogeneous freezing
rates from classical nucleation theory

Lines 11-34 in next slide

Kernel: hetfrz_classnuc_cam_calc

 11 qcic = min(qc(i,k)/lcldm(i,k), 5.e-3_r8)
 12 ncic = max(nc(i,k)/lcldm(i,k), 0._r8)
 13 con1 = 1._r8/(1.333_r8*pi)**0.333_r8
 14 r3lx = con1*(rho(i,k)*qcic/(rhoh2o*max(ncic*rho(i,k), 1.0e6_r8)))**0.333_r8
 15 r3lx = max(4.e-6_r8, r3lx)
 16 supersatice = svp_water(t(i,k))/svp_ice(t(i,k))
 17 !svp_water and svp_ice are two subroutines
 18 fn(1) = factnum(i,k,mode_accum_idx)
 19 if (nmodes == MAM3_nmodes .or. nmodes == MAM4_nmodes) then
 20 fn(2) = factnum(i,k,mode_accum_idx)
 21 fn(3) = factnum(i,k,mode_coarse_idx)
 22 else if (nmodes == MAM7_nmodes) then
 23 fn(2) = factnum(i,k,mode_finedust_idx)
 24 fn(3) = factnum(i,k,mode_coardust_idx)
 25 end if
 26 call hetfrz_classnuc_calc(&
 27 deltatin, t(i,k), pmid(i,k), supersatice, &
 28 fn, r3lx, ncic*rho(i,k)*1.0e-6_r8, frzbcimm(i,k), frzduimm(i,k), &
 29 frzbccnt(i,k), frzducnt(i,k), frzbcdep(i,k), frzdudep(i,k), hetraer(:,i,k), &
 30 awcam(:,i,k), awfacm(:,i,k), dstcoat(:,i,k), total_aer_num(:,i,k), &
 31 coated_aer_num(:,i,k), uncoated_aer_num(:,i,k), &
 32 total_interstitial_aer_num(:,i,k), &
 33 total_cloudborne_aer_num(:,i,k), errstring)
 34 !hetfrz_classnuc_calc is a sequential routine with hundreds of lines}

Kernel Performance on a Summit Node

Kernel: ccncalc

 1 do k=top_lev,pver
 2 do i=1,ncol
 3 a(i)=surften_coef/tair(i,k)
 4 smcoef(i)=smcoefcoef*a(i)*sqrt(a(i))
 5 enddo
 6 do m=1,ntot_amode
 7 phase=3
 8 call loadaer(state, pbuf, 1, ncol, k, &
 9 m, cs, phase, naerosol, vaerosol, hygro)
 10 !get data from pbuf to naerosol, vaerosol, and hygro
 11 where(naerosol(:ncol) .gt. 1.e-3_r8)
 12 amcube(:ncol)=amcubecoef(m)*vaerosol(:ncol)/naerosol(:ncol)
 13 sm(:ncol)=smcoef(:ncol)/sqrt(hygro(:ncol)*amcube(:ncol))
 14 elsewhere
 15 sm(:ncol)=1._r8
 16 endwhere
 17 do l=1,psat
 18 do i=1,ncol
 19 arg(i)=argfactor(m)*log(sm(i)/super(l))
 20 ccn(i,k,l)=ccn(i,k,l)+naerosol(i)*0.5_r8*(1._r8-erf(arg(i)))
 21 enddo
 22 enddo
 23 enddo
 24 enddo

- calculate the number of concentrations of
aerosols activated when cloud condensation
nuclei are at supersaturation

 1 do k=top_lev,pver
 2 do m = 1, ntot_amode
 3 call loadaer(state, pbuf, 1, ncol, k, &
 4 m, cs, phase, naerosol(:,m,k), vaerosol(:,m,k), hygro(:,m,k))
 5 !define naerosol, vaeroosol, hygro as 3D instead of 1D
 6 enddo
 7 enddo
 8

 9 $acc data copy(ccn) copyin(vaerosol, naerosol, hydro) &
 10 $acc& copyin(super,amcubecoef,argfactor,tair,smccoefcoef,surften_coef)
 11 $acc parallel loop private(a,smcoef,arg,sm,amcube,m,i,l) default(present)
 12 do k=top_lev,pver
 13 do i=1,ncol
 14 a(i)=surften_coef/tair(i,k)
 15 smcoef(i)=smcoefcoef*a(i)*sqrt(a(i))
 16 enddo
 17 do m=1,ntot_amode
 18 phase=3
 19 where(naerosol(:ncol) .gt. 1.e-3_r8)
 20 amcube(:ncol)=amcubecoef(m)*vaerosol(:ncol.m.k)/naerosol(:ncol,m,k)
 21 sm(:ncol)=smcoef(:ncol)/sqrt(hygro(:ncol,m,k)*amcube(:ncol))
 22 elsewhere
 23 sm(:ncol)=1._r8
 24 endwhere
 25 do l=1,psat
 26 do i=1,ncol
 27 arg(i)=argfactor(m)*log(sm(i)/super(l))
 28 ccn(i,k,l)=ccn(i,k,l)+naerosol(i,m,k)*0.5_r8*(1._r8-erf(arg(i)))
 29 enddo
 30 enddo
 31 enddo
 32 enddo
 33 ...
 34 $acc end data

GPU version

Kernel Performance on a Summit Node

5.4 Kernel: nsubmix
 1 do i = 1, ncol
 2 ... !more than 400 lines of code
 3 do n = 1, nsubmix
 4 qncld(:) = qcld(:)
 5 nnew <--> nsav !nnew = 1, nnsav=0
 6 srcn(:) = 0
 7 do m = 1, ntot_amode
 8 mm = mam_idx(m,0)
 9 srcn(top_lev:pver-1) = srcn(top_lev:pver-1) + &
 10 nact(top_lev:pver-1,m)*raercol(top_lev+1:pver,mm,nsav)
 11 tmpa = raercol(pver,mm,nsav)*nact(pver,m) + &
 12 raercol_cw(pver, mm, nsav) * (...)
 13 srcn(pver) = srcn(pver) + max(0.0_r8, tmpa)
 14 enddo
 15 call explmix(qcld, srcn, ..., qncld) !compute qcld from qncld
 16
 17 do m = 1, ntot_amode
 18 mm = mam_idx(m,0)
 19 source(top_lev:pver-1) = &
 20 nact(top_lev:pver-1,m)*(raercol(top_lev+1:pver,mm,nsav))
 21 tmpa = ... !same as line 9
 22 source(pver) = max(0.0_r8, tmpa)
 23 call explmix(raercol_cw(:, mm, nnew), source, ..., raercol_cw(:, mm, nsav), ...)
 24 !compute raercol_cw(,,nnew) from raercol_cw(,,nsav)
 25 call explmix(raercol(:, mm, nnew), source, ..., raercol(:, mm, nsav), &
 26 raercol_cw(:, mm, nsav))
 27 !compute raercol(,,nnew) from raercol(,,nsav) and raercol_cw(,,nsav)
 28 do l = 1, nspec_amode(m)
 29 mm = mam_idx(m, l)
 30 source(top_lev:pver-1) = !same as line 17 except using mact instead nact
 31 tmpa = !same as line 19 except using mact instead nact variable
 32 source(pver) = max(0.0_r8, tmpa)
 33 call explmix !same as line 21
 34 call explmix !same as line 23
 35 enddo
 36 enddo
 37 enddo
 38 ...
 39 enddo

 Kernel: nsubmix

 Kernel: restructured nsubmix

 1 do mm = 1, ncnst_tot
 2 do k = top_lev, pver
 3 m = mam_idx_1d(1, mm)
 4 l = mam_idx_1d(2, mm)
 5 kp1 = min(k+1,pver)
 6 km1 = max(k-1,top_lev)
 7 if (l == 0) then
 8 tmpa = nact(k,m)*raercol(kp1,mm,nsav)
 9 if (k == pver) then
 10 tmpa = tmpa + raercol_cw(pver,mm,nsav)*(nact(pver,m) - taumix)
 11 tmpa = max(0.0_r8, tmpa)
 12 endif
 13 else
 14 tmpa = mact(k,m)*raercol(kp1,mm,nsav)
 15 if (k == pver) then
 16 tmpa = tmpa + raercol_cw(pver,mm,nsav)*(mact(pver,m) - taumix)
 17 tmpa = max(0.0_r8, tmpa)
 18 endif
 19 endif
 20 call explmix(raercol_cw(k, mm, nnew), source, ...)
 21 call explmix(raercol(k, mm, nnew), source, ...)
 22 end do
 23 end do

Kernel Performance on a Summit Node

MAM Kernel Performance on Summit

- 24 -

Kermel Performance Analysis

● MAM kernels are light, the average run time is within milliseconds.

● Secondly, the parallelism mainly comes from the vertical level (pver=72) and the

number of columns in a block (pcol). Considering that the Nvidia GPUs use a warp size
of 32 as the scheduling unit, neither pver(= 72) nor ncol(<= 16) is a perfect fit,
resulting in thread resource waste.

● To improve the performance from an application perspective, the size of pcol and

pver can therefore be aligned to multiples of warp size.

Kernel Average runtime on GPUs and CPUS

Kernel Performance vs PCOL Values

Kernel Performance vs MPS

Both CPU and CPU+GPU Versions Scale Well across Multiple Nodes

Summary and Conclusion

● We investigated if GPUs can be used to accelerate the performance
of MAM, a module of E3SM on Summit using OpenACC.

● We have achieved over a 5X performance speedup by offloading
some of the kernels to Nvidia Volta GPUs.

● The results revealed that under the current E3SM configuration for
product runs, some parameter settings do not suit offloading, such as
the number of columns per block and the number of vertical levels.
○ These settings not only severely limit the degree of parallelism but also fail to

make effective use of GPU thread resources, becoming a performance bottleneck.

Summary and Conclusion (cont.)

● Run time scatters across many kernels, and each computational
kernel is relatively light, with average run time in milliseconds or less
per call. Such light computational kernels particularly require
OpenACC implementation to further reduce overhead from kernel
launching, data transfer, etc.

● Performance was primarily limited by the kernel nsubmix, which did
not benefit from GPU offloading.

● We are looking into overlapping computations and data transfer using
async OpenACC directives and possibly merging kernel computations
to improve MAM’s performance.

Acknowledgement

● All authors from Lawrence Berkeley National Laboratory were
supported by the Office of Advanced Scientific Computing Research
in the Department of Energy Office of Science under contract number
DE-AC02-05CH11231.

● This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

Thank You!

