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Performance Portability 

• Wide range of architectures are developed CPUs, GPUs, Many-Core 
Processors, ARM, FPGAs, memory centric … 

• Developing/tuning code for every architecture causes development and 
maintenance overheads 

• Answer: Performance Portability 

– run the user code without any changes across diverse architectures 

– Same (or nearly same) performance as architecture-specific code 

• OpenMP 4.5, OpenACC, Kokkos, RAJA, OCCA, …   

• Kokkos portable construct: 

 Kokkos::parallel_for(…, KOKKOS_LAMBDA(int i){ 

  … 

 }); 
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Vectorization support in Kokkos 

Kokkos uses compiler directives to achieve auto-vectorization  

 

Programmers have to compromise between: 

• Rely Kokkos’s support with in-built directives 
– Pros: Get a portable code 

– Cons: Vectorization may not be always efficient 

• Use SIMD primitive (from a third party library) 
– Pros: Efficient vectorization 

– Cons: No CUDA backend, compilation with nvcc fails 

               Maintain a separate version: No portability! 

 

 

        Fix: A Portable SIMD primitive with a CUDA backend 
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What is SIMD Primitive? 

• A SIMD primitive is a wrapper around intrinsics 

• Speedup by explicit vectorization  

• Works across CPUs, readable, maintainable 

 

 

 
//simd library: 
struct simd{ 
  __m512d _data;   
  inline simd operator+  (const simd &x){ 
    return _mm512_add_pd ( _data, x._data ); 
  } 
}; 
 
//user code: SIMD primitive performs the same operation: 

simd A, B, C; 
C = A + B; 

Wrapper around  
Intel KNL intrinsics 
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//user code using intrinsics: 

__m512d A, B, C;   
C = _mm512_add_pd(A, B) 

Explicit Vectorization Using SIMD Primitive 
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//user code using intrinsics: 

__m512d A, B, C;   
C = _mm512_add_pd(A, B) 

Explicit Vectorization Using SIMD Primitive 

nvcc can not compile 
this code for cuda 



Why SIMD Primitive when compiler can auto-vectorize? 

• Better efficiency possible 

• Avoids significant code changes needed for auto-vectorization 

for (i over mesh 2563 cells){ 
 … 
 for (j < 4){ 
  … 
  for(k < 3) 
   ...  
  … 
 }  
 while (r < t){ 
  … 
 } 
 A[i + offset] = …  
 … 
} 

1. Innermost loop gets auto-vectorized 

2. Non-countable iterations 

3. Assumed dependencies due to offset 
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Can this loop be vectorized? 



Some of many SIMD Primitives libraries 

• stk::simd and KokkosKernels with Trilinos package. 

• Vc vectorization library 

• VCL: C++ vector Class Library 

• Unified Multi/Many-Core Environment  (UME) framework 

• Generic SIMD Library 

 

But no CUDA backend! 

 

 

 
7 



Requirements of Portable SIMD Primitive 

• Portability 

 

• Heterogeneous execution: backend based on the execution space 

 

• Standard math operations and library functions 

 

• Logical Vector Length (LVL) 

 

• Performance and vectorization 

– No overhead against efficiently auto-vectorized code 

– Performance boost against hard to auto-vectorized code 

– No overhead against efficient CUDA code i.e., improving CPU performance must not 
hamper GPU performance 
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Portability: Creating a CUDA backend 

struct simd{ 

 

  __m512d _d;   

 

  inline simd  

  operator+ (const simd &x){ 

    simd sum; 

 

 sum = _mm512_add_pd(_d, x._d); 

 

    return sum; 

  } 

}; 

struct simd{ 

 

 double _d[BLOCK_DIM_X];   

 

  __device__ inline simd 

  operator+ (const simd &x){ 

 simd sum; 

    int tx = threadIdx.x; 

    sum._d[tx] =_d[tx] + x._d[tx]; 

 

    return sum; 

  } 

}; 

KNL backend reused from stk::simd New CUDA backend 

1. simd length number of doubles  

2. Each vector lane adds its elements 
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Heterogeneous execution: template meta-
programming  

 

• Multiple execution spaces in the same program 

• Execution space passed as a template parameter 

 simd<double, …, Kokkos::OpenMP> A; 

 simd<double, …, Kokkos::Cuda> B; 

 

Supports execution of tasks on different platforms in a same program. 

 

 



Logical Vector Length (LVL) 

Scalar: 
for(int i = 0;  i < 16;  i++)  
 c[i] = a[i] + b[i]; 

for(int i = 0;  i < 4;  i++)  
 c[i] = a[i] + b[i]; 

SIMD Primitive: physical vector length = 4 

c = a + b; //similar to matlab 

Logical vector length = 16 
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• Passed as a template parameter. Operators iterate over LVL elements. 
Each vector lane operators on LVL / PVL number of elements 

• User code transparent to physical vector length (PVL) 

• Arrays can be used as variables: similar to matlab 

• Can “unroll and jam” loops automatically: ILP + cache reuse 



Performance Evaluation 

• Case studies: 
– Uintah’s CharOx 

– 2D -Convolution 

– Batched GEMM 

– Ensembled SpMV 

• All kernels first written using Kokkos and then the portable 
SIMD primitive added 

• Tested on Intel KNL, Nvidia P100 and Cavium ThunderX2 
(ARMv8.1) 
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for (i over 323 patch-cells){ 
 … 
 for (j < 4){ 
  … 
  for(k < 3) 
  … 
 }  
 while (r < t){ 
  … 
 } 
 A[i + offset] = …  
  … 
} 

Uintah CharOx kernel* 

• Simulates oxidation of coal in a boiler  

• 350 lines of code. 

• Complex control flow: triply nested loops, breaks, conditionals  

• Array access with offsets 

• 300+ iterations for every cell 

• Efficient auto-vectorization needs: 

− Rearranging loops 

− Rearranging conditionals 

− Scalar variables to arrays 

• #pragma simd generates vgather and gives only 4.3x speedup 

 

Can cells loop be vectorized? 

Objective Baseline Ideal Speedup  

CPU: Vectorization  
GPU: Find out overhead 

CPU: Not vectorized 
GPU: Ported to cuda 

KNL: 8x 
P100: 1x 
ARM: 2x 

*The scalar version was optimized by John Holmen 



SP for CharOx Kernel 

• No changes in arithmetic operations 

• Reduce loop iterations by a factor of the SIMD length 

• Cast data structures to SIMD primitive 

• Use SIMD conditional operator instead of if else 

• Algorithmic change:  

– Newton-Raphson solve runs independently for every cell until convergence 

– With simd type, loop iterates until all cells within simd block converge 

• Code change: less than 10% of the kernel. Effort: 2 days 
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Vectorizing CharOx Kernel 
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Not vectorized 
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SIMD Primitive 



Results – Uintah CharOx 

Improving CPU performance did not hamper GPU performance! 
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• Fewer instructions, fewer L1 cache misses 
• Near-ideal speedup on KNL 
• No overhead on GPU 
• Super linear speedup on ThunderX2 

KNL ARM 

Num of Inst 6x   4.5x 

L1 Data Misses 2x 3.8x  



1: for b in 0:mini-batches 
2:   for co in 0:output filter 
3:     for i in 0:M               //image rows 
4:       for j in 0:M            //image columns 
5:         for ci in 0:channels 
6:           for fi in 0:F        //filter rows 
7:             for fj in 0:F      //filter columns 
8:               out(b, co, i, j) +=  
                   in(b, ci, i-F/2+, j-F/2+fj) * 
                   filter(co, ci, fi, fj) 

2D Convolution 

Can the 4th loop be vectorized? • Used in deep neural networks, image processing 

• Can the 4th loop be vectorized?: Yes, #pragma 

simd (This forms the baseline) 

• data reuse?: Yes, “filter” 

• Further improvements?: Yes, unroll-and-jam the 

4th loop 

• The new primitive used to vectorize the code 

instead of #pragma simd 

• LVL automatically unrolls and jams the loop 
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Objective Baseline Expected Speedup  

Evaluate the LVL 
CPU: Efficiently Auto-vectorized 
GPU: Ported to CUDA 

Small speedup 



Results – 2D Convolution 

• LVL increased data reuse – fewer loads, better cache 

hit rate 

• Improved GPU performance matches that of cuDNN 

(Nvidia provided cuda library for DNN) without any 

hand tuning or platform specific functions 
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KNL ARM 

Num of Inst 2.4x   1.4x 

Num of loads 1.5x 1.6x  

L2 Hit Rate 3.3x 



Batched GEMM 

• GEMM operations over batch of matrices organized in an interleaved fashion* 

• KokkosKernels (KK) implementation forms a baseline. Used in CFD code 

called “SPARC” 

• KK kernel vectorized using inbuilt SIMD primitive. Performs as well as (or 

better than) Intel mkl – a good test to find out the overhead if any 

• A same code was re-implemented using the new portable SIMD primitive 
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Objective Baseline Expected Speedup  

Find out overhead 
CPU: Explicitly vectorized 
GPU: Ported to CUDA 

1x 



Results – Batched GEMM 

• No overhead on KNL / GPU. 
• Small speedup on ThunderX2 due to KK’s SIMD primitive lacks ThunderX2 backend 
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(Batch size = 16384)  



Ensembled SpMV 

• A sparse matrix multiplied by an “ensemble” of vectors 

• Used in uncertainty quantification of predictive simulations 

• Vectors arranged in an interleaved fashion. Each matrix element reused 

across all vectors. Provides up to 4x speedup over traditional layout* 

• Baseline gets auto-vectorized 

• SIMD primitive version maps input and resultant vectors to the primitive and 

maps LVL to length of the vector 

• Matrices from University of Florida’s sparse matrix collection. 
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Objective Baseline Expected Speedup  

Find out LVL overhead 
CPU: Efficiently auto-vectorized 
GPU: Ported to CUDA 

1x 



Results – Ensembled SpMV 

23 

• Up to 1.4x and 1.1x speedups on KNL and ThunderX2. Improved register usage 
• No overhead on GPU. 

(Ensemble size = 64)  



Conclusions 
• Extended SIMD primitive in Kokkos can provide: 

– Efficient CPU vectorization 

– GPU portability 

– GPU performance as fast raw cuda 

– LVL can add extra boost 
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Future Work 
• Vectorize more kernels within Uintah 

• Explore use of the SIMD primitive with OpenMP 4.5 and 

OpenACC 



Questions? 
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Backup slides 

26 



Single Instruction Multiple Data (SIMD) Model 

A0 A1 

• CPUs with Vector Processing Units (VPUs) 

• One “vector operation” processes multiple elements at once 

• Intel’s Knights Landing’s vector length 512 bits, Gen9 GPUs have vector length of 128 bits. Armv8 supports 
vector length of 2048 bits 

• Vectorization is must for the performance 

 

 A2 A3 A4 A5 A6 A7 

B0 B1 B2 B3 B4 B5 B6 B7 

+ + + + + + + + 

C0 C1 C2 C3 C4 C5 C6 C7 
= = = = = = = = 

A0 A1 A2 A3 A4 A5 A6 A7 

B0 B1 B2 B3 B4 B5 B6 B7 

C0 C1 C2 C3 C4 C5 C6 C7 

+ 

= 

CPU Execution: 
16 loads 
8 adds 
8 stores 

SIMD Execution: 
2 vector loads 
1 vector add 
1 vector store 
8x faster 

 
For example, on Intel KNL:   
 
for(int i = 0;  i < 256;  i++)  
     C[i] = A[i] + B[i]; 
 
• 256 iterations without vectorization 
• 32 iterations with vectorization 
• 8x faster 
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Vectorization strategies 

• Compiler auto-vectorization (guided by directives such as simd, vector, and ivdep) 

• Explicit vectorization using intrinsics 

– platform dependent 

– consumes significant effort 

– not readable 

__m512d A, B, C;    KNL simd type holding 8 doubles 
 
C = _mm512_add_pd(A, B)      intrinsic to add 8 doubles 
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Vectorization support in Kokkos 
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Uintah infrastructure APIs for Portable SIMD Primitive 

Scalar array simd array with simd length = 4 

1 simd 
element with 4 
scalars 

getSimdView<ExeSpace>() 

• Casts entire data structure.  

• Computation independent of 

neighboring cells .             

e.g. Char Oxidation. 

to_simd() 

• Casts a scalar pointer to into 

simd pointer.  

• Computation independent of 

neighboring cells .        e.g. 

stencil operations 
check_simd_limit<ExeSpace> (i, i_max): 

Under development. Masks simd lanes/ 

cuda threads going out of the boundary 
during remainder iterations 
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Implementation Challenge – temporary type 

Kokkos: 

parallel_for( …, [=](int i){ 

 

 

     printf(); 

 

     simd a; 

 

     a = alpha [i]; 

 

 

}); 

CPU equivalent: 

#pragma omp parallel for 

for(int i=0; i<N; i++){ 

 

   printf(); 

 

 __m512d a; 

 

A = _mm512_load_pd(alpha[i]) 

 

 

} 

GPU equivalent: 

__global__ void kernel(int i){ 

 

 

     printf(); 

 

     double a [ 4 ]; 

 

     a [ threadIdx.x ] =  

     alpha [ i*4 + threadIdx.x ]; 

 

} 
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4 cuda threads declare 4 doubles 
(i.e. 16 doubles total) rather than 
declaring 4 doubles shared 
among 4 vector lanes 



Example  
Scalar: 
using namespace Kokkos; 
View<double *, Cuda> A(…), B(…); 
 
//initialize A, B 
 
parallel_for(..., [&](int i){ 
 B[i] += A[i]; 
 ... 
}); 

SIMD Primitive: 
using namespace Kokkos; 
View<double *, Cuda> As(…), Bs(…); 
 
typedef simd<double, …, Cuda>Double; 
typedef View<Double *, Cuda> SimdView; 
SimdView A(SimdView(reinterpret_cast<Double *>(As.data())); 
SimdView B(SimdView(reinterpret_cast<Double *>(Bs.data())); 
 
parallel_for (..., [&](int i){ 
 B[i] += A[i]; 
     ... 
}); 



Fix for the temporary type 

//cuda version for double, blockDim.x = 32 

struct Portable_Temp { 

     double _d[1]; 

}; 

 

Kokkos: 

parallel_for( …, [=](int i){ 

     printf(); 

     Portable_Temp a; 

     a = alpha [i]; 

}); 

Use a temporary variable of size one for cuda, rather than SIMD type 
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Declare “using Portable_Temp=simd” for CPU  
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Use Case Objective Baseline Ideal Speedup  

Uintah’s 
CharOx 

CPU: Vectorization  
GPU: Find out overhead 

CPU: Not vectorized 
GPU: Ported to cuda 

KNL: 8x 
P100: 1x 
ARM: 2x 

2D -
Convolution 

Evaluate the LVL 
CPU: Efficiently Auto-vectorized 
GPU: Ported to CUDA 

Between 1x to 2x 

Batched 
GEMM 

Find out overhead 
CPU: Explicitly vectorized 
GPU: Ported to CUDA 

1x 

Ensembled 
SpMV 

Find out LVL overhead 
CPU: Efficiently auto-vectorized 
GPU: Ported to CUDA 

1x 


