
A Portable SIMD Primitive in Kokkos for
Heterogeneous Architectures

Damodar Sahasrabudhe†, Eric Phipps*, Sivasankaran Rajamanickam*,
Martin Berzins†.

†Scientific Computing and Imaging Institute, University of Utah
*Center for Computing Research, Sandia National Laboratories

The work is funded by:
1. Sandia National Laboratories
2. The Department of Energy, National Nuclear Security Administration, under Award Number(s) DE-

NA0002375

1

Performance Portability

• Wide range of architectures are developed CPUs, GPUs, Many-Core
Processors, ARM, FPGAs, memory centric …

• Developing/tuning code for every architecture causes development and
maintenance overheads

• Answer: Performance Portability

– run the user code without any changes across diverse architectures

– Same (or nearly same) performance as architecture-specific code

• OpenMP 4.5, OpenACC, Kokkos, RAJA, OCCA, …

• Kokkos portable construct:

 Kokkos::parallel_for(…, KOKKOS_LAMBDA(int i){

 …

 });

2

Vectorization support in Kokkos

Kokkos uses compiler directives to achieve auto-vectorization

Programmers have to compromise between:

• Rely Kokkos’s support with in-built directives
– Pros: Get a portable code

– Cons: Vectorization may not be always efficient

• Use SIMD primitive (from a third party library)
– Pros: Efficient vectorization

– Cons: No CUDA backend, compilation with nvcc fails

 Maintain a separate version: No portability!

 Fix: A Portable SIMD primitive with a CUDA backend

3

What is SIMD Primitive?

• A SIMD primitive is a wrapper around intrinsics

• Speedup by explicit vectorization

• Works across CPUs, readable, maintainable

//simd library:
struct simd{
 __m512d _data;
 inline simd operator+ (const simd &x){
 return _mm512_add_pd (_data, x._data);
 }
};

//user code: SIMD primitive performs the same operation:

simd A, B, C;
C = A + B;

Wrapper around
Intel KNL intrinsics

4

//user code using intrinsics:

__m512d A, B, C;
C = _mm512_add_pd(A, B)

Explicit Vectorization Using SIMD Primitive

What is SIMD Primitive?

• A SIMD primitive is a wrapper around intrinsics

• Speedup by explicit vectorization

• Works across CPUs, readable, maintainable

//simd library:
struct simd{
 __m512d _data;
 inline simd operator+ (const simd &x){
 return _mm512_add_pd (_data, x._data);
 }
};

//user code: SIMD primitive performs the same operation:

simd A, B, C;
C = A + B;

Wrapper around
Intel KNL intrinsics

5

//user code using intrinsics:

__m512d A, B, C;
C = _mm512_add_pd(A, B)

Explicit Vectorization Using SIMD Primitive

nvcc can not compile
this code for cuda

Why SIMD Primitive when compiler can auto-vectorize?

• Better efficiency possible

• Avoids significant code changes needed for auto-vectorization

for (i over mesh 2563 cells){
 …
 for (j < 4){
 …
 for(k < 3)
 ...
 …
 }
 while (r < t){
 …
 }
 A[i + offset] = …
 …
}

1. Innermost loop gets auto-vectorized

2. Non-countable iterations

3. Assumed dependencies due to offset

6

Can this loop be vectorized?

Some of many SIMD Primitives libraries

• stk::simd and KokkosKernels with Trilinos package.

• Vc vectorization library

• VCL: C++ vector Class Library

• Unified Multi/Many-Core Environment (UME) framework

• Generic SIMD Library

But no CUDA backend!

7

Requirements of Portable SIMD Primitive

• Portability

• Heterogeneous execution: backend based on the execution space

• Standard math operations and library functions

• Logical Vector Length (LVL)

• Performance and vectorization

– No overhead against efficiently auto-vectorized code

– Performance boost against hard to auto-vectorized code

– No overhead against efficient CUDA code i.e., improving CPU performance must not
hamper GPU performance

 8

Portability: Creating a CUDA backend

struct simd{

 __m512d _d;

 inline simd

 operator+ (const simd &x){

 simd sum;

 sum = _mm512_add_pd(_d, x._d);

 return sum;

 }

};

struct simd{

 double _d[BLOCK_DIM_X];

 __device__ inline simd

 operator+ (const simd &x){

 simd sum;

 int tx = threadIdx.x;

 sum._d[tx] =_d[tx] + x._d[tx];

 return sum;

 }

};

KNL backend reused from stk::simd New CUDA backend

1. simd length number of doubles

2. Each vector lane adds its elements

9

Heterogeneous execution: template meta-
programming

• Multiple execution spaces in the same program

• Execution space passed as a template parameter

 simd<double, …, Kokkos::OpenMP> A;

 simd<double, …, Kokkos::Cuda> B;

Supports execution of tasks on different platforms in a same program.

Logical Vector Length (LVL)

Scalar:
for(int i = 0; i < 16; i++)
 c[i] = a[i] + b[i];

for(int i = 0; i < 4; i++)
 c[i] = a[i] + b[i];

SIMD Primitive: physical vector length = 4

c = a + b; //similar to matlab

Logical vector length = 16

11

• Passed as a template parameter. Operators iterate over LVL elements.
Each vector lane operators on LVL / PVL number of elements

• User code transparent to physical vector length (PVL)

• Arrays can be used as variables: similar to matlab

• Can “unroll and jam” loops automatically: ILP + cache reuse

Performance Evaluation

• Case studies:
– Uintah’s CharOx

– 2D -Convolution

– Batched GEMM

– Ensembled SpMV

• All kernels first written using Kokkos and then the portable
SIMD primitive added

• Tested on Intel KNL, Nvidia P100 and Cavium ThunderX2
(ARMv8.1)

12

for (i over 323 patch-cells){
 …
 for (j < 4){
 …
 for(k < 3)
 …
 }
 while (r < t){
 …
 }
 A[i + offset] = …
 …
}

Uintah CharOx kernel*

• Simulates oxidation of coal in a boiler

• 350 lines of code.

• Complex control flow: triply nested loops, breaks, conditionals

• Array access with offsets

• 300+ iterations for every cell

• Efficient auto-vectorization needs:

− Rearranging loops

− Rearranging conditionals

− Scalar variables to arrays

• #pragma simd generates vgather and gives only 4.3x speedup

Can cells loop be vectorized?

Objective Baseline Ideal Speedup

CPU: Vectorization
GPU: Find out overhead

CPU: Not vectorized
GPU: Ported to cuda

KNL: 8x
P100: 1x
ARM: 2x

*The scalar version was optimized by John Holmen

SP for CharOx Kernel

• No changes in arithmetic operations

• Reduce loop iterations by a factor of the SIMD length

• Cast data structures to SIMD primitive

• Use SIMD conditional operator instead of if else

• Algorithmic change:

– Newton-Raphson solve runs independently for every cell until convergence

– With simd type, loop iterates until all cells within simd block converge

• Code change: less than 10% of the kernel. Effort: 2 days

14

Vectorizing CharOx Kernel

15

Not vectorized

16

SIMD Primitive

Results – Uintah CharOx

Improving CPU performance did not hamper GPU performance!

17

• Fewer instructions, fewer L1 cache misses
• Near-ideal speedup on KNL
• No overhead on GPU
• Super linear speedup on ThunderX2

KNL ARM

Num of Inst 6x 4.5x

L1 Data Misses 2x 3.8x

1: for b in 0:mini-batches
2: for co in 0:output filter
3: for i in 0:M //image rows
4: for j in 0:M //image columns
5: for ci in 0:channels
6: for fi in 0:F //filter rows
7: for fj in 0:F //filter columns
8: out(b, co, i, j) +=
 in(b, ci, i-F/2+, j-F/2+fj) *
 filter(co, ci, fi, fj)

2D Convolution

Can the 4th loop be vectorized? • Used in deep neural networks, image processing

• Can the 4th loop be vectorized?: Yes, #pragma

simd (This forms the baseline)

• data reuse?: Yes, “filter”

• Further improvements?: Yes, unroll-and-jam the

4th loop

• The new primitive used to vectorize the code

instead of #pragma simd

• LVL automatically unrolls and jams the loop
18

Objective Baseline Expected Speedup

Evaluate the LVL
CPU: Efficiently Auto-vectorized
GPU: Ported to CUDA

Small speedup

Results – 2D Convolution

• LVL increased data reuse – fewer loads, better cache

hit rate

• Improved GPU performance matches that of cuDNN

(Nvidia provided cuda library for DNN) without any

hand tuning or platform specific functions

19

KNL ARM

Num of Inst 2.4x 1.4x

Num of loads 1.5x 1.6x

L2 Hit Rate 3.3x

Batched GEMM

• GEMM operations over batch of matrices organized in an interleaved fashion*

• KokkosKernels (KK) implementation forms a baseline. Used in CFD code

called “SPARC”

• KK kernel vectorized using inbuilt SIMD primitive. Performs as well as (or

better than) Intel mkl – a good test to find out the overhead if any

• A same code was re-implemented using the new portable SIMD primitive

20

Objective Baseline Expected Speedup

Find out overhead
CPU: Explicitly vectorized
GPU: Ported to CUDA

1x

Results – Batched GEMM

• No overhead on KNL / GPU.
• Small speedup on ThunderX2 due to KK’s SIMD primitive lacks ThunderX2 backend

21

(Batch size = 16384)

Ensembled SpMV

• A sparse matrix multiplied by an “ensemble” of vectors

• Used in uncertainty quantification of predictive simulations

• Vectors arranged in an interleaved fashion. Each matrix element reused

across all vectors. Provides up to 4x speedup over traditional layout*

• Baseline gets auto-vectorized

• SIMD primitive version maps input and resultant vectors to the primitive and

maps LVL to length of the vector

• Matrices from University of Florida’s sparse matrix collection.

22

Objective Baseline Expected Speedup

Find out LVL overhead
CPU: Efficiently auto-vectorized
GPU: Ported to CUDA

1x

Results – Ensembled SpMV

23

• Up to 1.4x and 1.1x speedups on KNL and ThunderX2. Improved register usage
• No overhead on GPU.

(Ensemble size = 64)

Conclusions
• Extended SIMD primitive in Kokkos can provide:

– Efficient CPU vectorization

– GPU portability

– GPU performance as fast raw cuda

– LVL can add extra boost

24

Future Work
• Vectorize more kernels within Uintah

• Explore use of the SIMD primitive with OpenMP 4.5 and

OpenACC

Questions?

25

Backup slides

26

Single Instruction Multiple Data (SIMD) Model

A0 A1

• CPUs with Vector Processing Units (VPUs)

• One “vector operation” processes multiple elements at once

• Intel’s Knights Landing’s vector length 512 bits, Gen9 GPUs have vector length of 128 bits. Armv8 supports
vector length of 2048 bits

• Vectorization is must for the performance

 A2 A3 A4 A5 A6 A7

B0 B1 B2 B3 B4 B5 B6 B7

+ + + + + + + +

C0 C1 C2 C3 C4 C5 C6 C7
= = = = = = = =

A0 A1 A2 A3 A4 A5 A6 A7

B0 B1 B2 B3 B4 B5 B6 B7

C0 C1 C2 C3 C4 C5 C6 C7

+

=

CPU Execution:
16 loads
8 adds
8 stores

SIMD Execution:
2 vector loads
1 vector add
1 vector store
8x faster

For example, on Intel KNL:

for(int i = 0; i < 256; i++)
 C[i] = A[i] + B[i];

• 256 iterations without vectorization
• 32 iterations with vectorization
• 8x faster

27

Vectorization strategies

• Compiler auto-vectorization (guided by directives such as simd, vector, and ivdep)

• Explicit vectorization using intrinsics

– platform dependent

– consumes significant effort

– not readable

__m512d A, B, C; KNL simd type holding 8 doubles

C = _mm512_add_pd(A, B) intrinsic to add 8 doubles

28

Vectorization support in Kokkos

29

Uintah infrastructure APIs for Portable SIMD Primitive

Scalar array simd array with simd length = 4

1 simd
element with 4
scalars

getSimdView<ExeSpace>()

• Casts entire data structure.

• Computation independent of

neighboring cells .

e.g. Char Oxidation.

to_simd()

• Casts a scalar pointer to into

simd pointer.

• Computation independent of

neighboring cells . e.g.

stencil operations
check_simd_limit<ExeSpace> (i, i_max):

Under development. Masks simd lanes/

cuda threads going out of the boundary
during remainder iterations

30

Implementation Challenge – temporary type

Kokkos:

parallel_for(…, [=](int i){

 printf();

 simd a;

 a = alpha [i];

});

CPU equivalent:

#pragma omp parallel for

for(int i=0; i<N; i++){

 printf();

 __m512d a;

A = _mm512_load_pd(alpha[i])

}

GPU equivalent:

__global__ void kernel(int i){

 printf();

 double a [4];

 a [threadIdx.x] =

 alpha [i*4 + threadIdx.x];

}

31

4 cuda threads declare 4 doubles
(i.e. 16 doubles total) rather than
declaring 4 doubles shared
among 4 vector lanes

Example
Scalar:
using namespace Kokkos;
View<double *, Cuda> A(…), B(…);

//initialize A, B

parallel_for(..., [&](int i){
 B[i] += A[i];
 ...
});

SIMD Primitive:
using namespace Kokkos;
View<double *, Cuda> As(…), Bs(…);

typedef simd<double, …, Cuda>Double;
typedef View<Double *, Cuda> SimdView;
SimdView A(SimdView(reinterpret_cast<Double *>(As.data()));
SimdView B(SimdView(reinterpret_cast<Double *>(Bs.data()));

parallel_for (..., [&](int i){
 B[i] += A[i];
 ...
});

Fix for the temporary type

//cuda version for double, blockDim.x = 32

struct Portable_Temp {

 double _d[1];

};

Kokkos:

parallel_for(…, [=](int i){

 printf();

 Portable_Temp a;

 a = alpha [i];

});

Use a temporary variable of size one for cuda, rather than SIMD type

33

Declare “using Portable_Temp=simd” for CPU

34

Use Case Objective Baseline Ideal Speedup

Uintah’s
CharOx

CPU: Vectorization
GPU: Find out overhead

CPU: Not vectorized
GPU: Ported to cuda

KNL: 8x
P100: 1x
ARM: 2x

2D -
Convolution

Evaluate the LVL
CPU: Efficiently Auto-vectorized
GPU: Ported to CUDA

Between 1x to 2x

Batched
GEMM

Find out overhead
CPU: Explicitly vectorized
GPU: Ported to CUDA

1x

Ensembled
SpMV

Find out LVL overhead
CPU: Efficiently auto-vectorized
GPU: Ported to CUDA

1x

