
This research used resources of the Oak Ridge Leadership Computing Facility, which is a
DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725

Using Compiler Directives for
Performance Portability in

Scientific Computing: Kernels
from Molecular Simulation

Ada Sedova*,
Andreas Tillack, Arnold Tharrington

Scientific Computing, NCCS, ORNL

ORNL is managed by UT
Battelle for the Department
of Energy

2 SC18 WACCPD

Performance Portability
• Software-development productivity is reduced when

sections of high-performing programs must be
frequently rewritten in low-level languages for new
supercomputer architectures:
– increased labor costs
– code can become more error-prone

• shortened lifetimes
• multiple authors
• inherent difficulty of programming close to machine-level

3 SC18 WACCPD

Software Portability

• There are several types of portability
– binary portability is the ability of the compiled code to run on a

different machine
– source portability is the ability of the source code to be compiled on a

different machine and then executed

• Degree of portability (DP): !" = $%/$', where $% is the cost
to port and $' is the cost to rewrite the program
– a completely portable application has an index of one, and a positive

index indicates that porting is more profitable
– costs can include development time and personnel
compensations, as well as error production, reductions in
efficiency or functionality, and even less tangible costs such as
worker stress or loss of resources for other projects

4 SC18 WACCPD

Performance Portability
• We can say that an application is performance portable if it is not only

source-portable to a variety of HPC architectures using the Linux
operating system and commonly provided compilers, but also that its
performance remains in an acceptable range to be usable by
domain scientists for competitive research

• To avoid the ambiguity in the phrase ``acceptable range,'' Pennycook
(2016) proposed the following metric for PP:

|H| is the cardinality of the set H of all systems used to test the application a, p are the parameters used in a, and ei is the
efficiency of the application on each system i in H. Efficiency can be the ratio of performance of the given application to either
the best-observed performance, or the peak theoretical hardware performance.

5 SC18 WACCPD

• Because of such considerations, creating performance portable
applications has become an important effort in scientific computing
and is recognized as a significant software design goal by both the
U.S. Department of Energy (DOE) and the National Science
Foundation (NSF):

https://www.lanl.gov/asc/doe-coe-mtg-2017.php

NSF/Intel partnership on computer
assisted programming for heterogeneous
architectures (CAPA).

6 SC18 WACCPD

Accepted Best Practices for Portable Software
Design

• Modular format, linear arrangement (avoid heavy nesting)
• Simplicity, clarity and ample commenting
• Dedicated portable version: design decisions guided by portability

from initiation
• Use of a high-level programming interface with a re-targetable

back end that is standardized and supported by a number of both
commercial and open-source initiatives
– Compiler directives for HPC parallelization?

7 SC18 WACCPD

Classical Molecular Dynamics
• Popular tool for a number of fields within the

physical and chemical sciences
• Successfully implemented in the HPC setting

by several developers
• Extensive effort involved in porting these
programs to different HPC platforms in
order to meet increasingly rising standards.

• A variety of non-portable components are
employed in leadership MD programs that
allow for cutting-edge performance to be
obtained.
– CUDA
– SIMD intrinsic functions

8 SC18 WACCPD

• A system, represented by atomistic units, is propagated in time based on some
calculated forces using a numerical integration of Newton's equations of motion.
– The simulation cannot proceed with the next step until the previous one is completed

• A very small time-step is required to keep the simulation from sustaining
unacceptable drifts in energy, as compared to experimental timescales that the
simulation may be modeling
– Minimization of time per step is highly important.

• Several open-source, highly parallel classical MD programs scale to thousands of
nodes of a supercomputer and are heavily used internationally for molecular
research.
– These programs are able to perform a time step in less than two milliseconds for
systems of hundreds of thousands of atoms, or in seconds for systems of hundreds of
millions of atoms

Time step (fs)

9 SC18 WACCPD

Performance Portability with OpenACC

• Testing key kernels of the basic MD algorithm using acceleration
with OpenACC
– Assess whether the resulting performance of these kernels is within an

acceptable range to be used as part of HPC-based MD programs.
– Starting from scratch: not restricted by non-portable decisions and

legacy portions of existing applications
– Provides tests of the performance of OpenACC on kernels that involve
non-negligible memory operations, and large memory transfers to
the GPU, characteristic of many scientific applications.

– The kernels also represent calculations important to other types of
computational work such as classification and data analysis.

10 SC18 WACCPD

Largest Bottleneck in MD: Short-Range Non-bonded forces
• Lennard-Jones and Coulomb intermolecular forces: pairwise distance

approximation

http://www.sci-news.com/othersciences/physicalchemistry/wave-
like-nature-van-der-waals-forces-03717.html

DOI: 10.13140/RG.2.2.35138.07360

https://physics.stackexchange.com/questions/286907/w
hat-is-the-truth-of-the-electrostatic-force

11 SC18 WACCPD

Domain Decomposition
• The Lennard-Jones and short-range electrostatic forces

rapidly decay to zero outside of a radius of about 10-14
angstroms.
– Calculation can be reduced by imposing a distance-based
radial cutoff on each atom, outside of which no interactions
are considered.

– Algorithmically, the SNF calculation usually consists of a
spatial decomposition, or “domain decomposition” of the
system into a three-dimensional grid of cells

– If the spatial decomposition is performed so that the cells'
dimensions are close to the LJ cut-off distance, then only the
interacting cell-cell pairs need to be searched for
interacting atoms, for each cell

12 SC18 WACCPD

A central cell and its interacting cell neighbors. In the
periodic regime, all cells have 26 neighbors, and distances
of all atoms within the central cell must be calculated as
well, resulting in 27 cell-cell interactions that must be
calculated for each cell in the grid of the domain
decomposition.

Sparsity plot of the distance matrix for all cell-cell
interactions in the system, with those having
distances greater than the cut-off set to zero and
colored white, and interacting cells colored blue.
The cut-off creates a banded structure to the
matrix, and reduces the number of cell-cell
calculations by about 90%.

13 SC18 WACCPD

Performance Goal
• Key kernels from a MD calculation whose total time should remain under 7 ms/time-

step for a system under 20 M atoms, or 55 ms/time-step for a system of about 220 M
atoms, after domain decomposition.

• On a single node, the job size on the node must be large enough so that the total
domain decomposition would not use more that about 2000 nodes for a smaller
system, and 4000 nodes for a larger system.

– Common domain decomposition for MD programs involves computing the SNFs acting on about 15
K atoms on a single node. For around 15 K atoms, there are about 3,000 cell-cell interactions, so
what we aim for is a total kernel time under 6 ms for about 3,000 cell-cell interactions, or 50 ms for
about 12,000 cell-cell interactions.

– Corresponds to an 80% efficiency score compared to NAMD, and if maintained for all architectures
tested, would result in a minimum of 80% performance portability score.

– We test whether this performance can be maintained using the same source code, on nodes with
multi-core CPUs and on heterogeneous nodes containing a GPU.

14 SC18 WACCPD

Binning module (Neighbor-list updates): bin-assign, bin-
count, and bin sorting
• Bin-assign is easily parallelized by OpenACC and is very fast

– For 500,000 atoms: 115 microseconds, 30,000 atoms: 11 microseconds using

one node of Titan with the GPU.

• Bin count and sort are not easy to parallelize and can employ libraries

if needed, however, due to the limited number of atoms per cell, this is

also not a critical region

15 SC18 WACCPD

The squared pairwise distance calculation: performance,
portability, and effort

• OpenACC on the GPU and on the CPU, compared to…

• A CUDA kernel

• A method completely using routines from newly emerging batched versions of
accelerator-based Basic Linear Algebra Subprograms (BLAS) libraries.
– A pedagogical example of a solution that is not only portable, but actually requires the least

amount of parallel programming experience: allows the user to perform the calculation without
any knowledge of accelerator programming or even any experience with compiler directives.

– Batched versions of BLAS standard routines are not technically part of the standard, but there
is a growing need for these types of routines and they are available in many scientific libraries.

– On the CPU, the single-batch BLAS version using MKL outperforms a naïve parallelization
with openMP

16 SC18 WACCPD

17 SC18 WACCPD

18 SC18 WACCPD

19 SC18 WACCPD

Comparison of performance (time in ms),
for CUDA and OpenACC versions of the
GPU-based all-pairwise squared distances
calculation on OLCF Titan (K20X) and
Summit (V100), over increasing batch
sizes. A: Using OpenACC distance kernel.
B: Using CUDA distance kernel.

• On both Titan and Summit, a
reasonable number of batches could
be processed in under 10 ms, and on
Summit, all cell-cell interactions for a
system the size of a small protein
(about 6000 batches) could be
processed on a single GPU in under
10 ms.
• These results are within the

acceptable range we determined
for an MD step.

Performance on the GPU

20 SC18 WACCPD

The upper limit on the time-per-
step greatly constrains the
amount of batches that can be
offloaded to a single node,
resulting in the use of only a
small percent of the peak
FLOPs available on the GPU.
With no such constraint, it
would be possible to perform
significantly more pairwise
distance calculations per node
in a relatively rapid amount of
time based on how much the
two tested GPUs' global
memories can hold.

A. Comparison of performance by GFLOPS for CUDA and OpenACC
versions of the GPU-based all-pairwise squared distances calculation on
OLCF Titan (K20X) and Summit (V100), over increasing batch size. B:
Speedup (✖) of CUDA kernel over OpenACC kernel distance kernel on
Summit, for total runtime and memory transfer time. C: Speedup of CUDA
kernel over OpenACC kernel distance kernel on Titan.

21 SC18 WACCPD

Memory transfer time to GPU

Comparison of memory transfer time for CUDA versions (and BLAS version) of the GPU-
based all-pairwise squared distances calculation on a) OLCF Titan (K20X) and b) Summit
(V100), for different batch sizes. Inset: Speedup for Summit versus Titan

22 SC18 WACCPD

Performance on the CPU

23 SC18 WACCPD

Performance on the CPU

• For smaller batch sizes, times can be within an acceptable range for
Summit, but not Titan.

• The small batch size limit reduces the number of cell-cell interactions
to those in an equivalent system of about 20,000 atoms.

• Therefore, we see that performance of OpenACC, even on new
supercomputer cores, is barely within the lowest limit for performance
portability for the distance kernel.

24 SC18 WACCPD

• To get maximum performance on the CPU you must use threading,
alignment, and vectorization

• OpenACC has no functionality for intrinsic-function level specification.
It also has no option for treating thread affinity.

• OpenACC seems to be less useful for creating truly performant CPU-
based kernels than GPU version, for kernels like the distance
calculation.

25 SC18 WACCPD

Batched BLAS version
Comparison of performance of

BLAS version, all-pairwise squared

distances calculation, on the GPU,

using OLCF Titan (K20X) versus

Summit (V100).

Left: Comparison of

performance (time, ms) of

BLAS versus CUDA version

of all-pairwise squared

distances calculation, using

one GPU on Summit. Right:

Speedup of CUDA version on

Summit vs. cuBLAS-batched

version on Summit.

26 SC18 WACCPD

• The element-wise multiplication is available in MKL as a Hadamard
product, but not in cuBLAS, thus lines 4 and 5 of the algorithm were
performed on the CPU. Because of this, we found that on the GPU,
this algorithm cannot be performed completely with cuBLAS functions.

• Performance of the BLAS version is quite poor, but better than the
OpenACC-threaded CPU version.

• Despite optimized BLAS routines on the GPU provided by NVIDIA, the
memory operations swamp the performance in comparison to the
CUDA-C and the GPU-based OpenACC versions.

27 SC18 WACCPD

Amount of programming effort
• Some papers report that CUDA requires more effort than OpenACC, even for

workers familiar with both APIs.

• However, different compilers each may implement a particular directive instruction
differently, and variable performance may require alternate constructs to be used to
parallelize a particular section of code, leading to some level of trial and error in
each port.
– This lack of a defined outcome increases potentials for performance portability, as there are more

possibilities that optimal performance will be obtained by using different constructs and different
compilers, but can be frustrating for the user, and increased experience may not increase the
ease of this process.

– Therefore, the use of OpenACC may not require significantly less total worker effort than use of
CUDA-C for small kernels.

• On the other hand, the amount effort required for OpenACC parallelization is not
large, and the result is far more portable than CUDA-C after the first implementation
has been created. It is also possible that the effort required for OpenACC is less
than for some alternative portable solutions, such as OpenCL.

28 SC18 WACCPD

Conclusions

• For calculations representing bottleneck regions in MD, using OpenACC,
performance portability can be achived.

• We found that while performance on the GPU was closer to the performance
of CUDA kernels, on the CPU, performance of threaded kernels was much
lower, and on older CPUs such as the AMD Bulldozers, would not provide
acceptable performance. However, on the Power 9 processors, CPU
performance remained within the low range of acceptability for smaller job
sizes.

• Future work can compare the performance of these kernels when using
OpenMP both on the CPU and the GPU. It is possible that the need for some
amount SIMD-level instructions could be required for better performance on
the CPU, and can also be tested in future work with OpenMP SIMD
constructs.

29 SC18 WACCPD

Acknowledgements
Thank you to:

OLCF, ORNL

Scientific Computing group, NCCS, ORNL

CMB, ORNL,

Oscar Hernandez

Thank you to the WACCPD Workshop Organizers

