OpenACC Based GPU Parallelization of
Plane Sweep Algorithm for Geometric
Intersection

Anmol Paudel
Satish Puri
Marquette University
Milwaukee, WI

Introduction

 Scalable spatial computation on high performance computing (HPC)
environment has been a long-standing challenge in computational
geometry.

* Harnessing the massive parallelism of graphics accelerators helps to
satisfy the time-critical nature of applications involving spatial
computation.

* Many computational geometry algorithms exhibit irregular
computation and memory access patterns. As such, parallel
algorithms need to be carefully designed to effectively run on a GPU
architecture

Introduction (contd.)

* Geometric intersection is a class of problems
involving operations on shapes represented as
line segments, rectangles (MBR), and polygons.

* Line segment intersection problem is one of the
most basic problem in spatial computing and all
other operations for bigger problems like polygon
overlay or polygon clipping depends on results
from it

Line Segment Intersection Problem

* The line segment intersection problem basically asks two questions —
* Intersection detection problem

e “are the line segments intersecting or not?”

* And if they are intersecting
* intersection reporting problem

* “what are the points of intersection?”

* We present an algorithmic solution for the second

Some Common Methods

e Simple brute force method

* Filter and refine method that uses a heuristic to avoid unnecessary
Intersection computations

* Plane Sweep

Contribution

* To the best of our knowledge, this is the first work demonstrating an
effective parallelization of plane sweep on GPUs

* A reduction based technique to find neighbors in the sweepline to
reduce the added complexities of parallelization

* Completely directives-based implementation of all algorithms

Plane Sweep

—

* Technique to solve computational geometry problems by sweeping through
the problem space

* Plane Sweep reduces O(n?) segment to segment pair-wise computation
Into

e O(nlogn) for identification
* O(n + klogn) for reporting, good algorithm when k << n

* Works best if the dataset can fit in memory

 Parallelization difficult due to the in-order sequential processing of events
stored in a binary tree and a priority queue data structure.

* Widely used in many other computational geometry problems like Voronoi
diagram or Delaunay triangulation

In Computational Geometry

* Lines in computer application are usually finite lines with start and
end points —not justy=mx+c

* Finding line intersection in computers might not be as simple as
solving two mathematical equations.

* Complex geometries like triangle, quadrilateral or any n-vertices
polygon are further stored as a bunch of points.

* For example a quadrilateral would be stored like
(x1,y1,x2,y2,x3,y3,x4,y4)

N

Directive-based Programming

* | would usually have a slide here discussing about Directive-based
programming and why we choose that route

e But since this is WACCPD ...

* Let’s just say directives are the future of accelerators and parallel
programming

Algorithm 1 Naive Brute Force

1: Load all lines to L

2: for each line |1 in . do

3: for each line > in L. do

4 Test for intersection between [; and [»
5 if intersections exists then
6: calculate intersection point
7 store it in results
8 end if

9 end for

0:

10: end for

Algorithm 2 Plane Sweep

1:
2:

3:

>

Load all lines to L
Initialize a priority queue (PQ) for sweeplines which retrieves items based on the

y-position of the item
Insert all start and end points from L to PQ
Initialize a sweepline

: While PQ is not empty:

If the nextItem is startevent:
The segment is added to the sweepline
HandleStartEvent(AddedSegment)
If the nextItem is endevent:
The segment is removed from the sweepline
HandleEndEvent(RemovedSegment)
If the nextltem is intersection-event:
[Note that there will be two contributing lines at intersection point.
Let these two lines be 11 and l2.]
HandlelntersectionEvent(l;,l2)
Record the intersecting pairs

Algorithm 4 StartEvent Processing

1: procedure HANDLESTARTEVENT(/;)
Intersection is checked between
[; and its left neighbor
[, and its right neighbor
If any intersection is found
update intersection events
2: end procedure

Algorithm 5 EndEvent Processing

1: procedure HANDLEENDEVENT(I;)
Intersection is checked between
the left and right neighbors of [,
If intersection is found
update intersection events
2: end procedure

Algorithm 6 IntersectionEvent Processing

1: procedure HANDLEINTERSECTIONEVENT(l;,l2)
Intersection is checked between
the left neighbor of the intersection point and [;
the right neighbor of the intersection point and [,
the left neighbor of the intersection point and [l
the right neighbor of the intersection point and [
if any intersection is found
update intersection events
2: end procedure

Algorithm 3 Modified Plane Sweep Algorithm

1: Load all lines to L
2: For each line [; in L:
Create a start-sweepline (SSL) at the lower point of [y
For each line l> in L:
If 15 crosses SSL:
update left and right neighbors
HandleStart Event(l;)
3: For each line [; in L:
Create an end-sweepline (ESL) at the upper point of [,
For each line l> in L:
If I> crosses ESL:
update left and right neighbors
HandleEndEvent(l;)
4: While intersection events is not empty for each intersection event:
Create an intersection-sweepline (ISL) at the intersection point
For each line [in L:
If | crosses ISL:
update left and right neighbors
// let Iy and l> are the lines at intersection event
HandlelntersectionEvent(l;, [2)
5: During intersection events, we record the intersecting pairs

Start Event Sweeplines

Fig. 2. Vertical Plane Sweep

Algorithmic Analysis

* Time Complexity
* each of the N lines will have two sweeplines => 2N? comparison steps
» each of the K intersection event will also produce a sweepline => K*N steps
e total is 2N% + K * N steps.
* Assuming K << N, the time-complexity of this algorithm is O(N?)

e Space Complexity
* There will be 2N sweeplines for N lines
* K sweeplines for K intersection events.
e Total Memory requirement will be 2N +K
* Assuming K << N, the space-complexity of the algorithm is O(N).

Algorithm 7 Reduction-based Neighbor Finding

1: Let SL be the sweepline

2: Let x be the x-coordinate in SL around which neighbors are needed
3: L « all lines

4: prev < MIN | nxt + MAX

5: for each line [in L. do-parallel reduction(maxloc:prev, minloc:nxt)
6: if intersects(l,SL) then

T h <« intersectionPt(l,SL)

8: if h < x then

9: prev = h
10: end if
11: if h > x then
12: nxt = h
13: end if
14: end if

15: end for

x=| 25

x-cord in SL

p=MIN
n=MAX

hvalues| 92 (21 |45 |53 (29|38 |62 (88 |14 |76 (23

7 8 9 10

index

p=MIN p=23
n=MAX

_/

p=MIN p=MIN p=MIN p=MIN p=MIN p=MIN p=14

p=MIN p=21
n=53 n=29 n=38 n=62 n=88 n=MAX n=76

n=92 n=MAX n=45

ploc = reduction(maxloc:p) = 10
nloc = reduction(minloc:n) = 4

prev = arr[ploc] = 23
nxt =arr{nloc] =29

Fig. 3. Reduction-based Neighbor Finding

Table 2. Description of real-world datasets.

Dataset Polygons| Edges| Size
1|Urban areas 11K| 1,153K| 20MB
2|State provinces 4K| 1,332K| 50MB
3|Sports areas 1, 783K |20,692K [590M B
4|Postal code areas 170K |65,269K| 1.4GB
5/Water Bodies 463K |24,201 K |520M B
6|Block Boundaries 219K 60,046 K| 1.3GB

Segment Intersection Phases

Lakes
Boundaries

\ 4

Counties
Boundaries

A 4

Extract MBR
and Line
Segments

Filter Phase

Refine Phase

Build intersection
graphs using MBRs
(R-tree)

Segment Intersections

Output List of
Overlapping Polygons

Table 4. Performance comparison of polygon intersection operation using sequential
and parallel methods on real-world datasets.

Running Time (s)

Dataset Sequential Parallel
GEOS OpenMP |OpenACC
Urban-States 5.77 2.63 1.21

USA-Blocks-Water 148.04 83.10 34.69
Sports-Postal-Areas 267.34| 173.51 31.82

Table 1. Dataset and corresponding number of intersections

Lines|Intersections

10k 1095
20k 2068
40k 4078

80k 8062

Testing parallelizability with OpenMP

Speedup of Parallel Plane Sweep

25

[y
U

Speedup
(I
o

2p 4p 8p 16p 32p
Number of OpenMP threads

=@==10k ==@=20k ==@=40k 80k

Efficiency

c o o o L
o N B o 0 = N

Efficiency of Parallel Plane Sweep

2p 4p 8p 16p 32p
Number of OpenMP threads

w10k ==@==20k ==@==40k 80k

Table 3. CGAL, naive Sequential vs OpenACC on sparse lines

Lines| CGAL|BF-Seq/BF-ACC
10k 3.96s 8.19s 0.6s
20k 9.64s| 35.52s 1.52s
40k 17.23s| 143.94s 5.02s
80k 36.45s| 204.94s 6.73s

Table 8. Cuda vs OpenACC Parallel Plane Sweep on sparse lines

Lines|Cuda|PS-ACC
10k 0.23s 0.24s
20k 0.31s 0.25s
40k 0.65s 0.31s
80k 0.68s 0.65s

Intersection Time Comparison on Sparse Lines

256
64
= 16
[V}
£
= 4
1 —
1 20k 4 80k
0.25

Number of Lines

w@e= (GAL ==@==BF Seq ==@==BF ACC ==®==PS ACC

Machines Used

* Everest cluster at Marquette University

* This machine was used to run the OpenMP codes and on the Intel Xeon E5
CPU v4 E5-2695

* Bridges cluster at the Pittsburgh Supercomputing Center

* Asingle GPU node of this cluster was used which contained the NVIDIA Tesla
P100

* NCSA ROGER Supercomputer
* Sequential GEOS and OpenMP code was run on Intel Xeon E5-2660v3
* GPU experiments using OpenACC on Nvidia Tesla P100

Conclusion

* Using Nvidia Tesla P100 GPU, our implementation achieves around
40X speedup for line segment intersection problem on 40K and 80K
data sets compared to sequential CGAL library

* Directives prove to be a promising avenue to explore in the future for
parallelizing other spatial computations as well.

THANK YOU

