
OpenACC Routine
Directive Propagation

using
Interprocedural Analysis

Aniket Shivam
University of California, Irvine

(Work done at NVIDIA/PGI)
sfjdf(

Michael Wolfe
NVIDIA/PGI

WACCPD @ SC 2018 Dallas, TX

1

Porting Applications to OpenACC (1/2)

´ Programmers need to specify:
´ what data to copy to or from the device memory

´ what code to compile for and run on the accelerator device

´ Programmers insert directives around code regions (compute construct).

´ If the compute construct calls a procedure:
´ Marking the procedure and any routine called inside the procedure, and so on

´ Marking the kind of parallelism exploited with the procedures and the routines

2

Porting Applications to OpenACC (2/2)

´ Ways to determine device code:

´ Compile all procedures for the accelerator (not viable for all accelerators)

´ Compiler chooses the procedures for the accelerator (viable for procedures in the same file)

´ Ex: PGI C++ compiler

´ Programmer mark the procedures needed on the device (including level of parallelism)

´ OpenACC and OpenMP target directives require programmers’ involvement.

´ OpenACC requires routine directive for each procedure called on device.

3

Marking OpenACC Routines

´ For routines called inside compute construct in C/C++:
´ If only called in the same file as the definition, then at the definition only.
´ If called from a separate file(s), then at all declaration(s) and the definition.

´ For Fortran, routine information propagated through module mechanism.

´ In case of missing routine directive:
´ Compilation error

´ Link-time error
´ Runtime error, if mismatch in level of parallelism

4

Contributions

´ Ease OpenACC programming using Interprocedural Analysis feature
´ Implemented as part of PGI IPA feature

´ By adding or propagating OpenACC routine directives throughout an application

´ Detecting error when existing directives don’t match

´ Detecting unannotated global variable usage

5

OpenACC Routines Directives

´ Types of parallelism for routines:
´ gang clause

´ worker clause

´ vector clause

´ seq clause

Order: gang > worker > vector > seq

6

#pragma acc routine seq
extern float externfunc1(float);
...
void test(float* x, int n) {

#pragma acc parallel loop copy(x[0:n])
for(int i = 0; i < n; ++i)

x[i] = externfunc1(x[i]);
}

main.c

#pragma acc routine seq
float externfunc2(float* x){

return x%2;
}
...
#pragma acc routine seq
float externfunc1(float* x){

return externfunc2(x) + 1;
}

external.c

PGI Interprocedural Analysis (-Mipa)

´ Three phases:

´ Summary phase (Compilation)

´ Saves information such as procedures called, loops in procedures,
global variable modification, etc.

´ Interprocedural Analysis phase (Link-Time)

´ Collect IPA information from object files

´ Builds a complete call graph

´ Propagates information forward and backward through call graph

´ Recompilation phase

´ Decides what files need to recompiled

7

Routine Propagation using IPA

´ Summary Phase

´ Add routine directive information to the summary for the definition

´ Add whether procedure call appears in an OpenACC compute construct

´ Suppress compiler error message for missing routine directives

8

Routine Propagation using IPA
´ Interprocedural Analysis phase

(Case 1)

´ Check if routine marked explicitly.

´ If not, mark device routine

´ Mark as acc routine seq

´ Recurse to any of its callees

9

#pragma acc routine seq
extern float func1a(float);
...
void test1(float* x, int n){

#pragma acc parallel loop copy(x[0:n])
for(int i = 0; i < n; ++i)

x[i] = func1a(x[i]);
}

main1.c

#pragma acc routine seq
float func1b(float* x){

return x%2;
}
...
#pragma acc routine seq
float func1a(float* x){

return func1b(x) + 1;
}

func1.c

Routine Propagation using IPA
´ Interprocedural Analysis phase

(Case 2)

´ Propagate directive

´ Propagate level of parallelism

´ From Definition to Declarations

10

#pragma acc routine gang
extern float func2a(float);
...
void test2(float* x, int n){

#pragma acc parallel loop copy(x[0:n])
for(int i = 0; i < n; ++i)

x[i] = func2a(x[i]);
}

main2.c
#pragma acc routine worker
extern float func2b(float);
...

#pragma acc routine gang
float func2a(float* x){

return func2b(x) + 1;
}

func21.c
#pragma acc routine worker
float func2b(float* x){

return x%2;
}

func22.c

Routine Propagation using IPA
´ Interprocedural Analysis phase

(Case 3)

´ Propagate directive

´ Propagate level of parallelism

´ Declaration to Definition

´ Declaration to other Declarations

11

#pragma acc routine vector
extern float func3a(float);
...
void test3(float* x, int n){

#pragma acc parallel loop copy(x[0:n])
for(int i = 0; i < n; ++i)

x[i] = func3a(x[i]);
}

main3.c

#pragma acc routine seq
float func3b(float* x){

return x%2;
}
...
#pragma acc routine vector
float func3a(float* x){

return func3b(x) + 1;
}

func3.c

Routine Propagation using IPA
´ Interprocedural Analysis phase

(Case 4)

´ Detect mismatch in level of
parallelism

´ Generate fatal error message

12

#pragma acc routine gang -> IPA error
extern float func4a(float);
...
void test4(float* x, int n){
#pragma acc parallel loop copy(x[0:n])

for(int i = 0; i < n; ++i)
x[i] = func4a(x[i]);

}
main4.c

#pragma acc routine vector
float func4a(float* x){

return x++;
}

func4.c

Routine Propagation using IPA
´ Interprocedural Analysis phase

(Case 5)

´ Checks if global variable
referenced in implicit routine

´ If directive present,
propagate acc declare

´ If not, IPA generates error

´ Missing data movement

13

MISSING: acc declare … (glob_y) -> IPA error

int glob_y = 100;

...
#pragma acc routine seq
float func5a(float* x){

return x*glob_y + x;

}

...

void test5(float* x, int n){
#pragma acc parallel loop copy(x[0:n])
for(int i = 0; i < n; ++i)

x[i] = func5a(x[i]);
}

main5.c

Routine Propagation using IPA

´ Recompile Phase

´ Create description of the implicit acc routine information

´ Reinvoke compiler to recompile object file only if:

´ New implicit acc routine directive

´ Calls procedure with no explicit routine information

14

Summary

´ Easier porting of applications (C, C++, Fortran) to OpenACC

´ Added feature in the PGI OpenACC compiler

´ Advantages of the presented approach:
´ Add new implicit acc routine directives

´ Propagate redundant marking of acc routine across file
´ Prevents link-time and run-time errors in applications

´ Only recompile files with new information

´ Limitation of the presented approach:
´ Indirect calls through procedure pointer

15

