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Introduction

● Energy Exascale Earth System Model (E3SM) is a state-of-the-art 
earth system simulation code
○ It has a large code base with over a million lines of Fortran code

○ Production code are currently optimized for advanced CPU systems

● Making effective use of GPUs, however, remains a challenge

● In this work, using the modal aerosol module (MAM) of E3SM as a 
driving example, we investigated how to effectively offload 
computational tasks to GPUs

● We chose to work with OpenACC directives 
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Modal Aerosol Module (MAM) of E3SM

● E3SM was developed to reliably project decade-to-century scale changes that 
could critically impact the U.S. energy sector. It combined the atmosphere, 
ocean, land, river, ice, and other components. 

● The computation of the atmosphere component is based upon the Spectral 
Element (SE) numerical discretization of underlying PDEs for stratified, 
hydrostatic fluid dynamics on rotating spheres.

● MAM is a submodule from the atmosphere component that plays an important 
role in the climate system by influencing the Earth's radiation budgets and 
modifying cloud properties.  It predicts the mass and mixing ratios of cloud 
liquid and cloud ice, diagnoses the mass and mixing ratios of rain and snow, 
and handles complicated conversions between cloud hydrometeors.



MAM in E3SM

● E3SM models the Earth with a cubed-sphere grid (6 faces) as shown in Fig. a).
● The resolution of the meshes is defined as the number of spectral elements ne along the 

edge of each cube face. (6ne2 elements total in the mesh)
● Each element contains a np*np tensor product of Gauss-Lobatto-Legendre (GLL)  

points depicted in Figure b), the number of unique points (physics columns)
● There exists another dimension, namely the vertical direction (except the sphere faces).
● Computations between physical columns are independent

a) b)



MAM in E3SM

• In the parallel implementation physical columns are distributed among the 
processes based on a set of load balancing strategies. 

• To get better caching effects, all the columns assigned to a process will be 
grouped in a data structure called a chunk. 

• In each chunk, a maximum number of columns PCOL is specified at 
compilation time.  

do j = 1, nchunks           !number of chunks
  do k = 1, nlev            !vertical levels, may have data dependency
    do i = 1, ncols(j)      !number of columns in chunk j
                            !sum(ncols(j) = total physical columns
      computation_kernels() !many different kernels
    enddo
  enddo
enddo

Loop structure for computations
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Experiment System – Summit at ORNL

o Theoretical peak ~200 PF (dp), 

o Each Summit node has two IBM Power9 
processors with six Nvidia V100 GPUs. 

o Power9 CPUs are connected with GPUs 
through dual NVLINK

o 512 GB of DDR4 memory for Power9 
CPUS and 96 GB of HBM for GPUs. 

o Each Nvidia V100 has 80 SMs, 16 GB of 
HBM, and a 6 MB L2 cache. 

o Each SM contains 64 FP32, 64 INT32, 32 
FP64 cores; partitioned to four processing 
blocks, each with a warp scheduler.



Experiment Setup

● E3SM: https://github.com/E3SM-Project/E3SM.git, branch shz0116/cam/cam_openacc

● We used the PGI compiler version 19.4, Spectrum MPI version 
10.3.0.1, and CUDA 10.1.168 

● Other libraries used in the E3SM code included NETCDF 4.6.1, 
NETCDF-FORTRAN 4.4.4, ESSL 6.1.0 , Parallel NETCDF 1.8.1, and 
HDF5 1.10.3

● The data set for E3SM is SMS_PS_Ld5.ne16_ne16.FC5AV1C-L, 
which stresses the atmosphere physics. Here, ne16 ne16 defines the 
cubed sphere grid resolution
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Offloading MAM Kernels to GPUs

● Data transfer was not trivial in MAM
○ MAM has a large code base with tens of thousands of lines of source code 

○ MAM does checkpointing with various I/O operations scattered all over the code

○ an excessive number of temporary subroutines or function variables need to be 
promoted and explicitly allocated on the GPU memory as well

● MAM has a flat profile, its run time is distributed across many functions, 
meaning we could not focus on just a couple of loops

● The programming effort needed to optimize different kernels also varies 
significantly by kernel. Some required a significant code refactoring



Kernel: subgrid_mean_updraft  

  1 !$acc parallel loop collapse(2) copyin(wsig,w0) copyout(ww) private(zz,wa)
  2 do k = 1, pver
  3   do i = 1, ncol
  4     sigma  = max(0.001_r8, wsig(i,k))
  5     wlarge = w0(i,k)
  6     xx = 6._r8 * sigma / nbin
  7     do ibin = 1, nbin            !constant nbin=50
  8       yy = wlarge - 3._r8*sigma + 0.5*xx
  9       yy = yy + (ibin-1)*xx
 10       zz(ibin) = yy * exp(-1.*(yy-wlarge)**2/(2*sigma**2))/(sigma*sqrt(2*pi))*xx
 11       if (zz(ibin) .gt. 0._r8) then
 12         wa(ibin) = zz(ibin)
 13       else
 14         wa(ibin) = 0._r8
 15       endif
 16     end do
 17     sum_wa = sum( wa(:))
 18     if (sum_wa .gt. 0._r8) then
 19       ww(i,k) = sum_wa
 20     else
 21       ww(i,k) = 0.001_r8
 22     end if
 23   enddo
 24 enddo - calculates the mean updraft velocity 
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Kernel: hetfrz_classnuc_cam_calc 

  1 !$acc declare create(ncnst, nmodes, ...) !create module variables on device
  2 !$acc update device(ncnst, nmodes, ...)
  3 ...
  4 !$acc enter data create(total_aer_num, ...)  
  5 ...
  6 !$acc parallel loop collapse(2) private(fn), copyin(t,pmid) &
  7 !$acc& copyout(frzbccnt,...) default(present)
  8   do k = top_lev, pver
  9     do i = 1, ncol
 10       if (t(i,k) .gt. 235.15_r8 .and. t(i,k) .lt. 269.15_r8) then
 

 35       end if
 36     end do
 37   end do
 38 ...
 39 !$acc exit data delete(total_aer_num, ...)

- calculates the heterogeneous freezing 
rates from classical nucleation theory 

Lines 11-34 in next slide 



Kernel: hetfrz_classnuc_cam_calc 

 11         qcic = min(qc(i,k)/lcldm(i,k), 5.e-3_r8)
 12         ncic = max(nc(i,k)/lcldm(i,k), 0._r8)
 13         con1 = 1._r8/(1.333_r8*pi)**0.333_r8
 14         r3lx = con1*(rho(i,k)*qcic/(rhoh2o*max(ncic*rho(i,k), 1.0e6_r8)))**0.333_r8
 15         r3lx = max(4.e-6_r8, r3lx)
 16         supersatice = svp_water(t(i,k))/svp_ice(t(i,k))
 17                          !svp_water and svp_ice are two subroutines
 18         fn(1) = factnum(i,k,mode_accum_idx)
 19         if (nmodes == MAM3_nmodes .or. nmodes == MAM4_nmodes) then
 20             fn(2) = factnum(i,k,mode_accum_idx)
 21             fn(3) = factnum(i,k,mode_coarse_idx)
 22         else if (nmodes == MAM7_nmodes) then
 23             fn(2) = factnum(i,k,mode_finedust_idx)
 24             fn(3) = factnum(i,k,mode_coardust_idx)
 25         end if
 26         call hetfrz_classnuc_calc( &
 27            deltatin,  t(i,k),  pmid(i,k),  supersatice,   &
 28            fn,  r3lx,  ncic*rho(i,k)*1.0e-6_r8,  frzbcimm(i,k),  frzduimm(i,k),   &
 29            frzbccnt(i,k),  frzducnt(i,k),  frzbcdep(i,k),  frzdudep(i,k),  hetraer(:,i,k), &
 30            awcam(:,i,k), awfacm(:,i,k), dstcoat(:,i,k), total_aer_num(:,i,k),  &
 31            coated_aer_num(:,i,k), uncoated_aer_num(:,i,k), &
 32            total_interstitial_aer_num(:,i,k), &
 33            total_cloudborne_aer_num(:,i,k), errstring)
 34                         !hetfrz_classnuc_calc is a sequential routine with hundreds of lines}
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Kernel: ccncalc 

  1 do k=top_lev,pver
  2   do i=1,ncol
  3     a(i)=surften_coef/tair(i,k)
  4     smcoef(i)=smcoefcoef*a(i)*sqrt(a(i))
  5   enddo
  6   do m=1,ntot_amode
  7     phase=3
  8     call loadaer(state, pbuf, 1, ncol, k, &
  9          m, cs, phase, naerosol, vaerosol, hygro)
 10          !get data from pbuf to naerosol, vaerosol, and hygro
 11     where(naerosol(:ncol) .gt. 1.e-3_r8)
 12       amcube(:ncol)=amcubecoef(m)*vaerosol(:ncol)/naerosol(:ncol)
 13       sm(:ncol)=smcoef(:ncol)/sqrt(hygro(:ncol)*amcube(:ncol))
 14     elsewhere
 15       sm(:ncol)=1._r8
 16     endwhere
 17     do l=1,psat
 18       do i=1,ncol
 19         arg(i)=argfactor(m)*log(sm(i)/super(l))
 20         ccn(i,k,l)=ccn(i,k,l)+naerosol(i)*0.5_r8*(1._r8-erf(arg(i)))
 21       enddo
 22     enddo
 23    enddo
 24 enddo

- calculate the number of concentrations of 
aerosols activated when cloud condensation 
nuclei are at supersaturation



  1 do k=top_lev,pver
  2 do m = 1, ntot_amode
  3    call loadaer(state, pbuf, 1, ncol, k, &
  4         m, cs, phase, naerosol(:,m,k), vaerosol(:,m,k), hygro(:,m,k))
  5         !define naerosol, vaeroosol, hygro as 3D instead of 1D
  6 enddo
  7 enddo
  8 

  9 $acc data copy(ccn) copyin(vaerosol, naerosol, hydro) &
 10 $acc& copyin(super,amcubecoef,argfactor,tair,smccoefcoef,surften_coef)
 11 $acc parallel loop private(a,smcoef,arg,sm,amcube,m,i,l) default(present)
 12 do k=top_lev,pver
 13   do i=1,ncol
 14     a(i)=surften_coef/tair(i,k)
 15     smcoef(i)=smcoefcoef*a(i)*sqrt(a(i))
 16   enddo
 17   do m=1,ntot_amode
 18     phase=3
 19     where(naerosol(:ncol) .gt. 1.e-3_r8)
 20       amcube(:ncol)=amcubecoef(m)*vaerosol(:ncol.m.k)/naerosol(:ncol,m,k)
 21       sm(:ncol)=smcoef(:ncol)/sqrt(hygro(:ncol,m,k)*amcube(:ncol))
 22     elsewhere
 23       sm(:ncol)=1._r8
 24     endwhere
 25     do l=1,psat
 26       do i=1,ncol
 27         arg(i)=argfactor(m)*log(sm(i)/super(l))
 28         ccn(i,k,l)=ccn(i,k,l)+naerosol(i,m,k)*0.5_r8*(1._r8-erf(arg(i)))
 29       enddo
 30     enddo
 31   enddo
 32 enddo
 33 ...
 34 $acc end data

GPU version
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5.4 Kernel: nsubmix 
  1 do i = 1, ncol
  2 ... !more than 400 lines of code
  3   do n = 1, nsubmix
  4     qncld(:) = qcld(:)
  5     nnew <--> nsav !nnew = 1, nnsav=0
  6     srcn(:) = 0
  7     do m = 1, ntot_amode
  8       mm = mam_idx(m,0)
  9       srcn(top_lev:pver-1) = srcn(top_lev:pver-1) +  &
 10           nact(top_lev:pver-1,m)*raercol(top_lev+1:pver,mm,nsav)
 11       tmpa = raercol(pver,mm,nsav)*nact(pver,m) + &
 12           raercol_cw(pver, mm, nsav) * (...)
 13       srcn(pver) = srcn(pver) + max(0.0_r8, tmpa)
 14     enddo
 15     call explmix(qcld, srcn, ..., qncld) !compute qcld from qncld
 16 
 17     do m = 1, ntot_amode
 18       mm = mam_idx(m,0)
 19       source(top_lev:pver-1) = &
 20             nact(top_lev:pver-1,m)*(raercol(top_lev+1:pver,mm,nsav))
 21       tmpa = ... !same as line 9
 22       source(pver) = max(0.0_r8, tmpa)
 23       call explmix(raercol_cw(:, mm, nnew), source, ..., raercol_cw(:, mm, nsav), ...)
 24                                 !compute raercol_cw(,,nnew) from raercol_cw(,,nsav)
 25       call explmix(raercol(:, mm, nnew), source, ..., raercol(:, mm, nsav), &
 26         raercol_cw(:, mm, nsav))
 27                 !compute raercol(,,nnew) from raercol(,,nsav) and raercol_cw(,,nsav)
 28       do l = 1, nspec_amode(m)
 29         mm = mam_idx(m, l)
 30         source(top_lev:pver-1) = !same as line 17 except using mact instead nact
 31         tmpa = !same as line 19 except using mact instead nact variable
 32         source(pver) = max(0.0_r8, tmpa)
 33         call explmix  !same as line 21
 34         call explmix  !same as line 23
 35       enddo
 36     enddo
 37   enddo
 38 ...
 39 enddo

 Kernel: nsubmix 



 Kernel: restructured nsubmix 

  1 do mm = 1, ncnst_tot
  2   do k = top_lev, pver
  3     m   = mam_idx_1d(1, mm)
  4     l   = mam_idx_1d(2, mm)
  5     kp1 = min(k+1,pver)
  6     km1 = max(k-1,top_lev)
  7     if (l == 0) then
  8       tmpa = nact(k,m)*raercol(kp1,mm,nsav)
  9       if (k == pver) then
 10         tmpa = tmpa + raercol_cw(pver,mm,nsav)*(nact(pver,m) - taumix)
 11         tmpa = max(0.0_r8, tmpa)
 12       endif
 13     else
 14       tmpa = mact(k,m)*raercol(kp1,mm,nsav)
 15       if (k == pver) then
 16         tmpa = tmpa + raercol_cw(pver,mm,nsav)*(mact(pver,m) - taumix)
 17         tmpa = max(0.0_r8, tmpa)
 18       endif
 19     endif
 20     call explmix(raercol_cw(k, mm, nnew), source, ...)
 21     call explmix(raercol(k, mm, nnew), source, ...)
 22   end do 
 23 end do
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Kermel Performance Analysis

●  MAM kernels are light, the average run time is within milliseconds. 

● Secondly, the parallelism mainly comes from the vertical level (pver=72) and the 

number of columns in a block (pcol). Considering that the Nvidia GPUs use a warp size 
of 32 as the scheduling unit, neither pver(= 72) nor ncol(<= 16) is a perfect fit, 
resulting in thread resource waste. 

● To improve the performance from an application perspective, the size of pcol and 

pver can therefore be aligned to multiples of warp size. 

Kernel Average runtime on GPUs and CPUS



Kernel Performance vs PCOL Values



Kernel Performance vs MPS



Both CPU and CPU+GPU Versions Scale Well across Multiple Nodes



Summary and Conclusion

● We investigated if GPUs can be used to accelerate the performance 
of MAM, a module of E3SM on Summit using OpenACC. 

● We have achieved over a 5X performance speedup by offloading 
some of the kernels to Nvidia Volta GPUs. 

● The results revealed that under the current E3SM configuration for 
product runs, some parameter settings do not suit offloading, such as 
the number of columns per block and the number of vertical levels.
○  These settings not only severely limit the degree of parallelism but also fail to 

make effective use of GPU thread resources, becoming a performance bottleneck. 



Summary and Conclusion (cont.)

● Run time scatters across many kernels, and each computational 
kernel is relatively light, with average run time in milliseconds or less 
per call. Such light computational kernels particularly require 
OpenACC implementation to further reduce overhead from kernel 
launching, data transfer, etc. 

● Performance was primarily limited by the kernel nsubmix, which did 
not benefit from GPU offloading. 

● We are looking into overlapping computations and data transfer using 
async OpenACC directives and possibly merging kernel computations 
to improve MAM’s performance.



Acknowledgement

● All authors from Lawrence Berkeley National Laboratory were 
supported by the Office of Advanced Scientific Computing Research 
in the Department of Energy Office of Science under contract number 
DE-AC02-05CH11231. 

● This research used resources of the Oak Ridge Leadership 
Computing Facility at the Oak Ridge National Laboratory, which is 
supported by the Office of Science of the U.S. Department of Energy 
under Contract No. DE-AC05-00OR22725. 



Thank You!


