
Implicit Low-Order Unstructured Finite-Element
Multiple Simulation Enhanced by Dense Computation
using OpenACC

Takuma Yamaguchi, Kohei Fujita, Tsuyoshi Ichimura,
Muneo Hori, Lalith Maddegedara, Kengo Nakajima

Fourth Workshop on Accelerator Programming Using Directives (WACCPD),
Nov. 13, 2017

1

Introduction

• Contribution of HPC to earthquake mitigation highly anticipated from society

• We are developing comprehensive earthquake simulation that simulate all phases of
earthquake disaster by use of full K computer system

• Simulate all phases of earthquake by speeding up core solver
• SC14 Gordon Bell Prize Finalist, SC15 Gordon Bell Prize Finalist & SC16 Best Poster & SC17

Best Poster Finalist

• Ported this solver to GPU environment using OpenACC in WACCPD 2016 (Best Paper)

• Today’s topic is enhancement of this GPU solver, and report performance on Pascal and
Volta GPUs

2Earthquake disaster process

K computer: 8 core CPU x 82944 node system

with peak performance of 10.6 PFLOPS

Comprehensive earthquake simulation

3

a) Earthquake wave propagation

-7 km

0 km

c) Resident evacuation

b) City response simulation

Shinjuku

Two million agents evacuating to nearest safe site

Tokyo station

Ikebukuro

Shibuya

Shinbashi

Ueno
Earthquake Post earthquake

Large finite-element simulation enabled

by developed solver

4

City simulation

Visualized by CYBERNET SYSTEMS CO., LTD

Target problem: Earth’s crust deformation problem

• Compute elastic response to given fault slip
• Many case analysis required for inverse analyses and Monte

Carlo simulations

• Compute using finite-element method: solve large
matrix equation many times

• Involves many random data access & communication

• Difficulty of problem
• Attaining load balance & peak-performance & convergency of

iterative solver & short time-to-solution at same time

• Smart use of compute precision space, constraints in solver
search space according to physical solution space required

5

Ku = f

Sparse, symmetric positive definite matrix

Unknown vector with up to 1 trillion degrees of freedom

Outer force vector

0

Earth’s crust deformation

problem

Designing scalable & fast finite-element
solver
• Design algorithm that can obtain equal granularity at O(million) cores

• Matrix-free matrix-vector product (Element-by-Element method) is promising:
Good load balance when elements per core is equal

• Also high-peak performance as it is on-cache computation

• Combine Element-by-Element method with multi-grid, mixed
precision arithmetic, and adaptive conjugate gradient method

• Scalability & peak-performance good (core computation kernels are Element-
by-Element), convergency good, time-to-solution good

6

f = Σe Pe Ke Pe
T u

[Ke is generated on-the-fly]

Element-by-Element method

+=

…
+=

Element #0

Element #1

Ke

uf
Element #N-1

…

Solver algorithm

Equation to be solved

(double precision)

CG loop

Computations of

outer loop

Outer loop

Solving

preconditioning

matrix

7

Second ordered

tetrahedron

Solve system roughly using CG solver

Solve system roughly using CG solver

Use for preconditioner of outer loop

Solving preconditioning matrix (single precision)

Inner loop level 1

Inner loop level 0

Linear tetrahedron

Second ordered

tetrahedron

Coarsened equation

(P12
TA1P12)x2=P12

Tb1

Inner loop level 2

Solve system roughly using CG solver

Use x1←P12 x2 as

initial solution

Use x0←P01 x1 as

initial solution

A
lg

e
b
ra

ic

c
o
a

rs
e
n

in
g

G
e
o

m
e
tric

c
o
a

rs
e
n

in
g

K. Fujita, T. Ichimura, K. Koyama, H. Inoue,

M. Hori, L. Maddegedara, Proceedings of

the Platform for Advanced Scientific

Computing Conference (PASC), June 2017

Performance on K computer
• Developed solver significantly faster than

• PCGE (standard CG solver algorithm; preconditioning with 3x3 block diagonal matrix)
• SC14 Gordon Bell Prize finalist solver (base solver for WACCPD 2016 GPU solver)

• Use this as a base for GPU solver

8

0

200

400

600

800

1000

1200

1400

1600

1800

e
la

p
s
e

d
 t
im

e
 o

f
s
o

lv
e

r
[s

]

9,216 18,432 36,864 73,728 147,456 294,912

1
3

8
.9

 s
 (

2
1

.3
%

)

2
7

2
.0

 s
 (

2
1

.9
%

)

1
3

7
5

 s
 (

1
8

.5
%

)

1
4

0
.0

 s
 (

2
1

.2
%

)

2
7

7
.5

 s
 (

2
1

.6
%

)

1
5

4
6

 s
 (

1
8

.1
%

)

1
4

4
.5

 s
 (

2
0

.9
%

)

2
9

2
.7

 s
 (

2
1

.4
%

)

1
5

7
2

 s
 (

1
8

.1
%

)

1
5

1
.3

 s
 (

2
0

.1
%

)

3
1
1

.8
 s

 (
2

1
.3

%
)

1
6

8
0

 s
 (

1
8

.3
%

)

1
4

8
.7

 s
 (

2
0

.1
%

)

3
0

8
.5

 s
 (

2
0

.5
%

)

1
5

7
3

 s
 (

1
7

.9
%

)

1
4

6
.5

 s
 (

2
0

.6
%

)

3
1

9
.7

 s
 (

2
0

.4
%

)

1
6

2
9

 s
 (

1
7

.6
%

)

of CPU cores

Elapsed time

Floating-point

arithmetic

efficiency to peak

• 94.8% scalability from

9216 to 294912 cores

• 4 times peak performance

of HPCG benchmark

(HPCG on K computer:

5.3% in double precision)

Introduction of GPU computations

• Further speedup of the simulation by introducing GPUs
• Good load balance, Reduced computation cost & data transfer size is

also beneficial for GPUs

• High performance can be obtained using OpenACC
with low development cost

• GPU architecture is different from CPU architecture
• Latency bound especially when we conduct random memory access

• Relatively smaller cache size

• Finite-element applications tend to be memory bandwidth bound

➔Simple porting of the CPU code is not sufficient

9

Key kernel: Element-by-Element kernel
• Most costly kernel; involves data recurrence

• Algorithm for avoiding data recurrence on CPUs
• Use temporary buffers per core & per SIMD lane

• Suitable for small core counts with large cache capacity

• Algorithm for avoiding data recurrence on GPUs
• Last year, we developed algorithm using atomics and achieved high performance

• However, random access becomes bottleneck…

10

Element-by-Element method

+=

…
+=

Data recurrence

(add into same node)

Element #0

Element #1

Ke

Element #N-1

uf …

Performance in simple porting

Computational Environment

K computer Reedbush-H

of nodes 20 10

CPU/node 1 x

SPARC64

VIIIfx

2 x Intel

Xeon E5-

2695 v4

GPU/node
--

2 x NVIDIA

P100

Hardware

peak FLOPS

/process

128

GFLOPS

5.30

TFLOPS

Memory

bandwidth

/process

64 GB/s 732 GB/s

39.00

7.75

0 10 20 30 40

K computer

Reedbush-H

Elapsed time of solver [s]

Outer Inner level 0 Inner level 1 Inner level 2

1/5.0

DP_FLOPS efficiency (%) 24.91 21.23 9.54 21.47

MEM. Efficiency (%) 22.81 16.78 43.81 23.18

DOF: 125,177,217, # of elements: 30,720,000

11

• Simple porting achieved 5.0 times speedup

• However, there is some room for improvement

• Memory bandwidth is 11 times larger

Strategy for Introduction of OpenACC

• To attain optimal performance, algorithm/implementation
suitable for GPUs should differ from that for CPUs

Thereby, we

1. Modify the solver algorithm to suit the GPU architectures

2. Port the solver to GPUs using OpenACC

12

Modification of Algorithm for GPUs

• Reduce random memory accesses

• Target applications (Inverse analyses, Monte Carlo method etc.)
solve many systems of equations

• Same stiffness matrix

• Different right-hand side input vectors

• Multiple equations at the same time

K u1,u2 , u3 , … , u16
𝑇 = f1, f2 , f3 , … , f16

𝑇

Instead of Ku1 = f1,Ku2 = f2,Ku3 = f3, …

…

Element #0

Element #1

u1

k
e

f1
ke

f2 f3 f4

u2 u3 u4

…

…

…

Element-by-Element kernel

13

Introduction of OpenACC – 1/3

Control of data transfer

Input vector f

Output vector u

Solve u=K−1f

!$acc data copy(u, …) copyin(f, …)

!$acc end data

Read data

!$acc update host(err)

Check convergence

CPU computation

GPU computation

Data transfer between CPU and GPUs

is minimized in the solver

• Only in convergence check part

• GPU Direct is used for

MPI communication

Computation (i.e, EBE)

14

Introduction of OpenACC – 2/3

Insertion of some directives for
parallel computation

Example for Element-by-Element
multiplication

• Assign 16 threads for one
element

• Introduce atomic functions to
avoid data race

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

!$acc parallel loop collapse(2) present(…

do i_ele = 1, n_element

do i_vec = 1, 16

cny1 = connect(1, i_ele)

cny10 = connect(10, i_ele)

u0101 = u(i_vec, 1, cny1)

u1003 = u(i_vec, 3, cny10)

Ku01 = …

Ku30 = …

!$acc atomic

r(i_vec, 1, cny1) = r(i_vec, 1, cny1) + Ku01

!$acc atomic

r(i_vec, 3, cny10) = r(i_vec, 3, cny10) + Ku30

enddo

enddo

!$acc end parallel

…
…

…
…

15

Introduction of OpenACC – 3/3

Minor tuning for OpenACC parameters

• The allocation of gang, worker and vector

• The length of vector

Optimize fine-grain control of parallelism

(Not large effect on performance)

16

Performance of the proposed solver

Computational Environment

K computer Reedbush-H

of nodes 20 10

CPU/node 1 x

SPARC64

VIIIfx

2 x Intel

Xeon E5-

2695 v4

GPU/node
--

2 x NVIDIA

P100

Hardware

peak FLOPS

/process

128

GFLOPS

5.30

TFLOPS

Memory

bandwidth

/process

64 GB/s 732 GB/s

39.00

7.75

2.75

26.43

0 10 20 30 40

K computer
1 vector

Reedbush-H
1 vector

K computer
16 vectors

Reedbush-H
16 vectors

Elapsed time of solver, per vector [s]

Outer Inner level 0 Inner level 1 Inner level 2

1/5.0

DP_FLOPS efficiency (%) 24.91 21.23 9.54 21.47

MEM. Efficiency (%) 22.81 16.78 43.81 23.18

1/14.2

K computer
16 vectors()

1/9.6

DOF: 125,177,217, # of elements: 30,720,000

17

The speedup of each kernel
Elapsed time per vector(s)

Kernel 1 vector 16 vectors Speedup

Element-by-

Element

computation

1st order (FP32) 0.948 0.584 1.62

2nd order (FP32) 0.687 0.401 1.71

2nd order (FP64) 0.044 0.025 1.78

SpMV 1.465 0.091 16.10

Dot product 0.213 0.522 0.41

Total 7.75 2.75 2.82

18

• Reduction in random memory access in EBE kernels

• Total computation time for SpMV is constant

• Bound by reading global matrix for memory

• Dot product is not efficiently computed

• OpenACC cannot use arrays for reduction option

• Using scalars (tmp1,tmp2,…,tmp16) causes stride memory access

Weak Scaling

Reedbush-H: P100 GPU x 240

1.57

1.60

1.50

1.51

1.54

16.76

16.95

15.54

15.83

16.13

21.21

22.05

21.61

23.68

23.27

7.93

9.03

6.99

8.97

8.95

47.47

49.63

45.64

49.99

49.89

0 10 20 30 40 50

No.1

No.2

No.3

No.4

No.5

Elapsed time of solver [s]

Outer Inner level 0 Inner level 1 Inner level 2

12 + 311 + 1300 + 2161

12 + 311 + 1346 + 2477

11 + 280 + 1312 + 1924

11 + 281 + 1430 + 2367

11 + 280 + 1341 + 2201

Model DOF # of elements
PCGE

iterations

of

GPUs

No. 1 125,177,217 30,720,000 4,928 20

No. 2 249,640,977 61,440,000 4,943 40

No. 3 496,736,817 122,880,000 4,901 80

No. 4 992,038,737 245,760,000 4,905 160

No. 5 1,484,953,857 368,640,000 4,877 240

19

Performance in using V100 GPUs

19.21

17.28

6.86

0 5 10 15 20

Reedbush-H
(P100 GPU)

DGX-1
(P100 GPU)

DGX-1
(V100 GPU)

Elapsed time of solver [s]

Outer Inner level 0 Inner level 1 Inner level 2
Computational Environment

Reedbush-H DGX-1 (P100/V100)

of nodes 4 1

CPU/node 2 x Intel Xeon

E5-2695 v4

2 x

Intel Xeon E5-2698 v4

GPU/node 2 x NVIDIA

P100

8 x NVIDIA

P100

8 x NVIDIA

V100

Hardware

peak

FLOPS

/ process

5.30

TFLOPS

5.30

TFLOPS

7.5

TFLOPS

Memory

bandwidth

/process

732 GB/s 732 GB/s 900 GB/s

DOF: 38,617,017, # of elements: 9,440,240

20

Higher performance than expected from

hardware capability

• improved L1/L2 caches

Application Example

Vp (m/s) Vs (m/s) ρ (kg/m3)

Crust layer 5664 3300 2670

Upper-mantle layer 8270 4535 3320

Philippine Plate 6686 3818 2600

Pacific Plate 6686 3818 2600

z
x

y

400 km

792 km

1192 km

(iii) Material properties

(ii) Close-up view

(i) Whole FE model

Estimation of coseismic slip distribution in 2011 Tohoku Earthquake

DOF: 409,649,580

of input vectors: 368 = 23 sets × 16 vectors

Computation Environment: 64 x P100 GPUs (32 nodes of Reedbush-H)

Computation time: 828s for 23 sets of analyses

(29 times better in performance than previous studies) Target Domain

21

Application Example

Vp (m/s) Vs (m/s) ρ (kg/m3)

Crust layer 5664 3300 2670

Upper-mantle layer 8270 4535 3320

Philippine Plate 6686 3818 2600

Pacific Plate 6686 3818 2600

z
x

y

400 km

792 km

1192 km

(iii) Material properties

(ii) Close-up view

(i) Whole FE model

Estimation of coseismic slip distribution in 2011 Tohoku Earthquake

DOF: 409,649,580

of input vectors: 368 = 23 sets × 16 vectors

Computation Environment: 64 x P100 GPUs (32 nodes of Reedbush-H)

Computation time: 828s for 23 sets of analyses

(29 times better in performance than previous studies) Estimated Distribution

22

Conclusion

• Accelerate the unstructured low-order finite element solvers by
OpenACC

• Design the solver appropriate for GPU computations

• Port the codes to GPUs

• Obtain high performance with low development costs
• 14.2 times speedup on P100 GPUs from the original solver

on CPU-based K computer

• Computation in low power consumption

• Improvement in reliability of earthquake simulation
• Many-case simulation within short time

23

