
© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of the FINE/FR CFD solver
in a heterogeneous environment with OpenACC directives

Xiaomeng ‘Shine’ Zhai1, David Gutzwiller1, Kunal Puri2, Charles Hirsch2

1:Numeca-USA 2:Numeca-International

1

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
Background: CFD & FINE/FR

• Computational Fluid Dynamics
– numerically solve governing equations of fluid motion,

and quantitatively predict fluid-flow phenomena

• FINE/FR solver
Based on High Order Flux-Reconstruction method [Huynh 2007]
– high accuracy compared to conventional methods, capturing fine-scale motions
– dense math calculations, compact computational stencil; well suited for GPU

2

streamlines around a Honda CR-V

conventional RANS High Order FR

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
Current Research: FINE/FR & INCITE

• OpenACC: a natural choice for Numeca

– 2X+ GPU speedup in time-to-solution for Fortran based FINE/TURBO [2015 WACCPD]

– Cost-effective to adapt existing/legacy applications for GPU; performance portable

– Prototyping with C++ based FINE/FR shows good potential for GPU acceleration

• To continue research into high fidelity industrial simulations, NUMECA was
selected for a US DOE INCITE project

– “Towards Understanding Instability Mechanisms of Axial Compressors”

– 305,000 node hours on OLCF SUMMIT, 2020 - 2021

– Targeting the high resolution simulation of rotating stall in an axial compressor

– Each node: 2 IBM POWER 9 22-core CPUs + 6 Nvidia V100 GPUs

• faster simulation turnaround depends on efficient use of GPUs

3

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
Current Research: FINE/FR & INCITE

4

This presentation will focus on the rapid implementation of
high performance CPU+GPU support with OpenACC and
cuBLAS in preparation for leadership scale computations

on SUMMIT.

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Programming Model

• Distributed Parallel MPI framework
– Static domain decomposition via parMETIS
– Distributed parallel checkpointing and restart
– Solver iteration loop (>95% of the execution time)

• Multiple calls to Intel MKL BLAS matrix multiplication routines
• Dozens of additional correction and calculation loops

– Demonstrated strong scalability on tens of thousands of cores

• Language: C++11
– Object oriented throughout; extensive templatization in the core solver algorithms
– Limited polymorphism, mostly outside of the iteration loop
– With some efforts, OpenACC is capable of handling this code

5

Natural Target for
GPU Acceleration

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Representative Trace & Profile

6

Calls to MKL BLAS Thread-safe
User Routines

Time marching loop

Single Time Step
(6.2 seconds)

● NASA Rotor37 Test Configuration
● Single passage sector configuration,

unsteady simulation with explicit
time stepping

● Linux Workstation, 8 core AMD
EPYC CPU + NVIDIA P6000 GPU

● Sample-based stack trace from
HPCToolkit

Partition Boundary
Exchange (MPI)

There is no magic bullet, to efficiently
leverage GPUs we must offload both BLAS

calls and many user routines

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Blind Incremental Acceleration

• Incrementally offload the costliest solver hot spots
– All BLAS calls replaced with cuBLAS
– Remaining user routines/loops instrumented with OpenACC pragmas
– Static data (coordinates, constants) offloaded to the device persistently
– Input/output data to each routine synced conservatively

7

Blind incremental acceleration is easy but
insufficient. The host/device transfer of bulk

data arrays negates most of the speedup

cuBLAS calls, negligible
amount of time

Numerous host/device
updates now dominate the

execution trace

CPU-only
 6.2 seconds

CPU+GPU
4.1 seconds

1.5X GPU
Speedup

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Minimized Data Transfer

• Host<->Device data transfer must be minimized
– This is only possible if all operations that touch the bulk data structures are offloaded to the device
– Some small operations are slower on the device than the host, this is ok
– All bulk 3D data offloaded to the device permanently
– The only remaining data transfer that occurs within the time marching loop are for boundary data and

infrequent bulk syncs for solution checkpointing to disk

8

CPU-only
 6.2 seconds

CPU+GPU
1.2 seconds

5.1X GPU
Speedup

Host/Device data transfer is
no longer a significant

consideration.

This can be viewed as an “all-or-nothing” implementation.

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Minimized Data Transfer (Continued)

• FINE/FR is a large C++ application with a complicated call tree
– The “all or nothing” approach to GPU acceleration is not realistic when accelerating a rapidly changing

code base with multiple developers
– A single new routine could lead to data locality bugs elsewhere in the solver that are hard to diagnose
– With a complicated call tree it is also not always clear when and where data has been modified
– How do we reduce implementation and maintenance cost?

• Solution: Location-Aware Arrays
– Wrap all data arrays in a container class
– In addition to linearized array data and host<->device update methods, this class also contains a “last

modified” flag indicating where the array was last updated
– It is the developer’s responsibility to flag the input/output arrays to all routines, what we refer to as

“GPU Boilerplate”
– This allows the developer to focus on the details of a particular routine, while naturally resulting in

minimized data transfer.

• Standalone Example...

9

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Minimized Data Transfer (Continued)

10

enum AccessType { HOST, DEVICE };

template <typename T>
class AccArray
{
public:
 AccArray(int size);
 ~AccArray();

 #pragma acc routine seq
 T& operator[] (int i) { return _data[i]; }
 void setLastAccess(AccessType access) { _lastAccess = access; }
 int getSize() { return _size; }

 void createDevice();
 void deleteDevice();
 void sync(AccessType access);
 void updateDevice();
 void updateHost();

private:
 T* _data;
 int _size;
 AccessType _lastAccess;
};

template <typename T>
AccArray<T>::AccArray(int size)
{
 _data = new T[size];
 _size = size;
}

template <typename T>
AccArray<T>::~AccArray()
{
 delete[] _data;
}

template <typename T>
void AccArray<T>::createDevice()
{
 #pragma acc enter data copyin(this)
 #pragma acc enter data create(_data[_size])
}

template <typename T>
void AccArray<T>::deleteDevice()
{
 #pragma acc exit data delete(_data[_size])
 #pragma acc exit data delete(this)
}

template <typename T>
void AccArray<T>::updateHost()
{
 #pragma acc update host(_data[_size])
}

template <typename T>
void AccArray<T>::updateDevice()
{
 #pragma acc update device(_data[_size])
}

template <typename T>
void AccArray<T>::sync(AccessType access)
{
 if (_lastAccess != access)
 {
 if (access == HOST)
 {
 updateHost();
 }
 else
 {
 updateDevice();
 }
 }
}

Conditional
host<->device
updates

AccArray.H

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Minimized Data Transfer (Continued)

11

#include <iostream>
#include <AccArray.h>
using namespace std;

void doubleValues(AccArray<int>& array)
{
 array.sync(DEVICE);
 #pragma acc parallel loop present (array)
 for (int i=0; i<array.getSize(); i++) array[i] = array[i]*2;
 array.setLastAccess(DEVICE);
}

void addValue(AccArray<int>& array, int adder)
{
 array.sync(HOST);
 for (int i=0; i<array.getSize(); i++) array[i] = array[i] + adder;
 array.setLastAccess(HOST);
}

int main(int argc, char** argv)
{
 int size = 10;
 AccArray<int> array(size);
 array.createDevice();

 for (int i=0; i<size; i++) array[i] = i;
 array.setLastAccess(HOST);

 doubleValues(array);
 doubleValues(array);

 array.sync(HOST);
 for (int i=0; i<size; i++)
 cout << "expected, calculated = " << (i*2*2) << "," <<array[i] << endl;
 array.deleteDevice();
}

main.cpp
:$ pgc++ -ta=tesla -acc -Minfo=acc main.cpp -I ./
doubleValues(AccArray<int> &):
 10, Generating present(array[:])
 Generating Tesla code
 12, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
AccArray<int>::operator [](int):
 4, include "AccArray.h"
 11, Generating acc routine seq
 Generating Tesla code
AccArray<int>::getSize():
 4, include "AccArray.h"
 13, Generating implicit acc routine seq
 Generating acc routine seq
 Generating Tesla code
AccArray<int>::createDevice():
 4, include "AccArray.h"
 45, Generating enter data copyin(this[:1])
 Generating enter data create(_data[:_size])
AccArray<int>::deleteDevice():
 4, include "AccArray.h"
 52, Generating exit data delete(this[:1],_data[:_size])
AccArray<int>::updateDevice():
 4, include "AccArray.h
 64, Generating update device(_data[:_size])
AccArray<int>::updateHost():
 4, include "AccArray.h"
 58, Generating update self(_data[:_size])

:$./a.out
expected, calculated = 4,4
expected, calculated = 8,8
expected, calculated = 12,12
expected, calculated = 16,16
expected, calculated = 20,20
expected, calculated = 24,24
expected, calculated = 28,28
expected, calculated = 32,32
expected, calculated = 36,36
expected, calculated = 40,40

Two accelerated functions.

Values set up on the host

“GPU Boilerplate”

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Minimized Data Transfer (Continued)

12

#include <iostream>
#include <AccArray.h>
using namespace std;

void doubleValues(AccArray<int>& array)
{
 array.sync(DEVICE);
 #pragma acc parallel loop present (array)
 for (int i=0; i<array.getSize(); i++) array[i] = array[i]*2;
 array.setLastAccess(DEVICE);
}

void addValue(AccArray<int>& array, int adder)
{
 array.sync(HOST);
 for (int i=0; i<array.getSize(); i++) array[i] = array[i] + adder;
 array.setLastAccess(HOST);
}

int main(int argc, char** argv)
{
 int size = 10;
 AccArray<int> array(size);
 array.createDevice();

 for (int i=0; i<size; i++) array[i] = i;
 array.setLastAccess(HOST);

 doubleValues(array);
 addValue(array,1);
 doubleValues(array);

 array.sync(HOST);
 for (int i=0; i<size; i++)
 cout << "expected, calculated = " << (i*2+1)*2 << "," <<array[i] << endl;
 array.deleteDevice();
}

main.cpp
:$ pgc++ -ta=tesla -acc -Minfo=acc main.cpp -I ./
doubleValues(AccArray<int> &):
 10, Generating present(array[:])
 Generating Tesla code
 12, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
AccArray<int>::operator [](int):
 4, include "AccArray.h"
 11, Generating acc routine seq
 Generating Tesla code
AccArray<int>::getSize():
 4, include "AccArray.h"
 13, Generating implicit acc routine seq
 Generating acc routine seq
 Generating Tesla code
AccArray<int>::createDevice():
 4, include "AccArray.h"
 45, Generating enter data copyin(this[:1])
 Generating enter data create(_data[:_size])
AccArray<int>::deleteDevice():
 4, include "AccArray.h"
 52, Generating exit data delete(this[:1],_data[:_size])
AccArray<int>::updateDevice():
 4, include "AccArray.h"
 64, Generating update device(_data[:_size])
AccArray<int>::updateHost():
 4, include "AccArray.h"
 58, Generating update self(_data[:_size])

:$./a.out
expected, calculated = 2,2
expected, calculated = 6,6
expected, calculated = 10,10
expected, calculated = 14,14
expected, calculated = 18,18
expected, calculated = 22,22
expected, calculated = 26,26
expected, calculated = 30,30
expected, calculated = 34,34
expected, calculated = 38,38

We add a new function call that modifies the
data on the CPU. No changes needed to the
host<->device management elsewhere.

The results are still correct, at
a later date “addValue”

could be blindly adapted for
GPU acceleration for

improved performance.

“GPU Boilerplate”

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Minimized Data Transfer (Continued)

• Location Aware Arrays
– Pros:

• Consistent use of location-aware arrays allows the developer(s) to follow a “Blind Incremental
Acceleration” approach, naturally yielding an efficient implementation with minimized data transfer

• New functionality may be implemented on the host with less risk of breaking the existing
heterogeneous code.

– Cons:
• It may be difficult to retrofit existing data structures, especially AoS data
• The use of “GPU Boilerplate” is mandatory for this approach to work

13

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Targeted Optimization

14

CPU-only
 6.2 seconds

CPU+GPU
1.2 seconds

5.1X GPU
Speedup

What comes next?

Host/Device data
transfer is no longer a

major concern.

CPU+GPU
Optimized

0.65 seconds

9.5X GPU
Speedup

Profiling identified a handful of
routine with very poor device

performance

Targeted optimization results in an
additional 2X performance boost

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Targeted Optimization

15

 #pragma acc parallel loop present(....)
[607] for(int iFace = 0; iFace < nbFaces; iFace++)
 {
 ...
 int nbPointsFace = getNbPoints(iFace);
 ...
[632] for (int iPoint = 0; iPoint < nbPointsFace; iPoint++)
 {
 <large amounts of thread safe math>
 }
 }

• The Flux Reconstruction method leads to
a pattern of nested loops
– Outer loop over the faces
– Inner loop over the number of points per face
– The number of points per face will vary for different

face types and different solution orders
– Exposed parallelism is limited

PGI 19.4 Compiler, -Minfo=acc output.

Generating Tesla code
607, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
632, #pragma acc loop seq

For large partitions there is sufficient parallelism in the outer
loop to saturate the device, but for certain operations such as
boundary treatment this is not the case.

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: Targeted Optimization

16

 #pragma acc parallel loop collapse(2) present(....)
[607] for(int iFace = 0; iFace < nbFaces; iFace++)
 {
[609] for (int iPoint = 0; iPoint < nbPointsFaceMax; iPoint++)
 {
 int nbPointsFace = getNbPoints(iFace);
 if (iPoint < nbPointsFace)
 {
 <large amounts of thread safe math>
 }
 }
 }

• Restructuring the loops in a tightly nested
form allows the use of the collapse
directive for more exposed parallelism at
the cost of a number of wasted threads

PGI 19.4 Compiler, -Minfo=acc output.

Generating Tesla code
607, #pragma acc loop gang, vector(128) collapse(2) /* blockIdx.x threadIdx.x
609, /* blockIdx.x threadIdx.x collapsed */

Restructuring of loops for maximum exposed parallelism greatly
improves device execution speed. Interestingly, this has been
shown to have little negative impact on the CPU performance.

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: GPU Acceleration

17

1.5X Speedup

5.1X Speedup

9.5X Speedup

How Does FINE/FR Perform on SUMMIT?

● NASA Rotor37 Test Configuration
● Single passage sector configuration,

unsteady simulation with explicit
time stepping

● Linux Workstation, 8 core AMD
EPYC CPU + NVIDIA P6000 GPU

● Sample-based stack trace from
HPCToolkit

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: OLCF SUMMIT Scalability

18

• At-Scale Strong Scalability Demonstration
– NASA Rotor37, 8M cells, order 3 polynomial flux reconstruction -> 500M Degree of Freedom
– 1 GPU is paired with 1 CPU (MPI rank), to maximize the partition size at large node count

80X

34X

6X

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
FINE/FR: OLCF SUMMIT Scalability & Discussions

19

• substantial decrease in partition size

– GPUs not saturated, deviation from linear scalability in the GPU run

• More math favors good GPU speedup: higher orders, larger geometry

• Caution with 80X speedup: cuBLAS highly optimized than netlib BLAS

© NUMECA Int.– All rights reserved13-Nov-2020 GPU acceleration of FINE/FR CFD solver with OpenACC

GPU acceleration of FINE/FR CFD solver with OpenACC
Conclusions & Next Steps

20

• Strategies for efficient GPU acceleration while maintaining portability and
easing long term code maintenance
– minimized data transfers, via location-aware arrays, “GPU boilerplate”

– optimization targeted at improving exposed parallelism to GPUs

– GPU speedup 9.5X on local workstation, 6X - 80X on Summit supercomputer

– continued optimization to provide sufficient computation to saturate GPUs

– hopes for future support of virtual functions, C++ vectors etc

Thank you for your (virtual) attention

Questions?

email xiaomeng.zhai@numeca.be

This research used resources of the Oak Ridge Leadership Computing Facility, which is a

DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

