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Introduction

 Solving a dense linear equations system A*X=B is one of  the 
most fundamental problems in numerous applications: physics, 
mathematics, and engineering

 Our application of  interest: boundary element method in 
electromagnetics (method of  moments)

 Despite its high computational complexity, a direct solver (LU 
factorization) often provides more robust results than iterative 
solvers for extremely ill-conditioned system matrices

 A distributed-memory, dense LU solver capable of  utilizing 
hardware accelerators available on top supercomputers is in need

 Performance-portability is important since future generation 
exa-scale HPC architectures are continuously evolving with 
significantly different architectures and programming models
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ADELUS’s Objectives

 A performance-portable dense LU solver for current and next 
generation distributed-memory hardware-accelerated HPC 
platforms 

 Using LU factorization with partial pivoting for double 
real/complex dense linear systems in distributed-memory
using MPI

 Using torus-wrap mapping scheme for workload distribution

 Leveraging Kokkos and Kokkos Kernels to provide performance 
portability

 Integrating with a real-world application production code and 
achieving PFLOPS performance
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ADELUS’s Objectives

 A performance-portable dense LU solver for current and next 
generation distributed-memory hardware-accelerated HPC 
platforms 

 Using LU factorization with partial pivoting for double 
real/complex dense linear systems in distributed-memory
using MPI

 Using torus-wrap mapping scheme for workload distribution

 Leveraging Kokkos and Kokkos Kernels to provide performance 
portability

 Integrating with a real-world application production code and 
achieving PFLOPS performance
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Kokkos and Kokkos Kernels



Kokkos Overview7

Kokkos is a productive, portable, performant, shared-memory programming model.

 is a C++ library, not a new language or language extension.

 supports clear, concise, thread-scalable parallel patterns.

 lets you write algorithms once and run on many architectures

e.g. OpenMP on multi-core CPUs, CUDA on NVIDIA GPUs, HIP  for AMD GPUs, 
SYCL for Intel GPUs, ...

 minimizes the amount of  architecture-specific implementation details users must 
know.

 solves the data layout problem by using multi-dimensional arrays with architecture-
dependent layouts

https://github.com/kokkos/kokkos-tutorials/blob/master/Intro-Short/Slides/KokkosTutorial_ATPESC18.pdf



An Abstraction Layer to Prevent Rewriting an Entire Code8

The Kokkos Lecture Series, “Kokkos at the Center”. https://github.com/kokkos/kokkos-
tutorials/blob/main/LectureSeries/KokkosTutorial_01_Introduction.pdf 



Kokkos Data Management and Execution9

Christian Trott , “Kokkos : Capabilities Overview”. https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf
Intel. Developer Guide for Intel Math Kernel Librar y for Linux . https://software.intel.com/en-us/node/528573

https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf


Kokkos Kernels10

Kokkos Kernels is a library for node-level, 
performance-portable, computational kernels 
for sparse/dense linear algebra and graph 
operations, using the Kokkos.

 KK is available publicly both as part of  
Trilinos and as part of  the Kokkos
ecosystem
(https://github.com/kokkos/kokkos-
kernels)

 Building block of  a solver, linear algebra 
library that uses MPI and threads for 
parallelism, or it can be used stand-alone 
in an application.

 Generic implementations for various 
scalar types and data layouts

 Interfaces to vendor-provided kernels
available in order to leverage their high-
performance libraries

 Several new kernels are being added as 
needed by the applications

https://github.com/kokkos/kokkos-kernels


Method of Moments for Linear 
Electromagnetics



Maxwell’s Equations in the Frequency Domain12

Wave Equations:

Maxwell’s Equations:

Instead of  solving Maxwell’s 
equations in 3D space via the wave 
equations, we solve them on the 
boundary between regions.

Vector and Scalar Potentials:

Lorenz gauge condition:

For a linear homogeneous, unbounded medium:

Free-Space Green’s Function:
Obs. 
pt.



Integral Equations (Boundary Element Method – BEM)13

where,

Example of  an electric field integral equation (EFIE) for metallic scatterer:

Through the equivalence principle, we consider the current on the 
object boundary instead of  the field around and inside the object. 
Enforcing the boundary condition at the surface: 

results in the following integral equation:

Vector Potential Scalar Potentials



Method of Moments (MoM)14

Numerical solution of  integral equation:

Discretize the scatterersExpand unknown in a set of  basis functions:

Test integral equation with basis functions.

Divergence-conforming 
Rao-Wilton-Glisson 

(RWG) basis functions

𝑍𝑚,𝑛 = න
𝑓𝑚

න
𝑓𝑛

𝑗𝜔𝜇𝒇𝑚 ∙ 𝒇𝑛 −
𝑗

𝜔𝜖
𝛻 ∙ 𝒇𝑚𝛻

′ ∙ 𝒇𝑛
𝑒−𝑖𝑘𝑟

4𝜋𝑟

Dense, Complex 
Matrix 

S.M. Rao, D.R. Wilton, A.W. Glisson, “Electromagnetic scattering by surface of arbitrary shape,” IEEE Trans. on Antennas and 

Propagat., 30(3), 409–418 (1982)



Parallel LU Solver Implementation



ADELUS Interface and Storage16

 Dense matrix and RHS vectors that are block-mapped to the MPI processes

 ADELUS is called by MPI processes with the matrix portions packed with RHS vectors 
(column-major order) as their inputs

 ADELUS data container is implemented by the Kokkos View for portability

In the host memory:
Kokkos::View<Kokkos::complex<double>**,Kokkos::LayoutLeft,Kokkos::HostSpace> 

A("A",my_rows,my_cols+my_rhs);

In the CUDA device memory:
Kokkos::View<Kokkos::complex<double>**,Kokkos::LayoutLeft,Kokkos::CudaSpace> 

A("A",my_rows,my_cols+my_rhs);

 Total number of  MPI processes = 6

 Number of  processes for a row = 3

 Number of  right-hand sides = 2



Torus-Wrap Mapping17

 Advantage: each process has nearly the same 
workload and the process idle time is minimized

 Column indices assigned to a MPI process 
constitute a linear sequence with step size Pc

 Row indices are in a sequence separated by Pr

 No need to redistribute the block-mapped matrix 
for torus-wrapped solver

 A block-mapped system can be solved by a solver 
assuming a torus-wrapped system. 

 Solution vectors are corrected afterwards by 
straightforward permutations

 Total number of  MPI processes: 6 (P=6)

 Number of  processes for a row: 3 (Pc=3)

 Number of  right-hand sides: 2

Np=N/Pc

Mp=N/Pr

P=PcPr

B.A. Hendrickson, D.E. Womble, “The torus-wrap mapping for dense matrix calculations on massively parallel computers,” SIAM J. Sci. Comput.15(5), 1201–1226(1994)



LU Factorization and Forward Solve

 Right-looking variant of  the LU factorization with partial pivoting

 Kokkos Kernels BLAS interfaces are used for local matrices in each MPI 
process
 Calls to optimized vendor library BLAS routines: multi-threaded CPU (IBM's 

ESSL BLAS), massively parallel GPU architectures (cuBLAS)

 CUDA-aware MPI: simple communication patterns: point-to-point 
communication and collective communication

 4 basic steps per iteration:

1. Find the pivot: each process finds its own local maximum entry in the 
current column and then exchanges for the global pivot value.

2. Scale the current column with the pivot value, and generate and 
communicate column update vector from the current column

3. Exchange pivot row and diagonal row

4. Update the current column, and when saving enough columns, update Z 
via GEMM
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KokkosBlas::iamax()

KokkosBlas::scal()

KokkosBlas::copy()

KokkosBlas::gemm()

MPI_Send()

MPI_Recv()

MPI_Irecv()

MPI_Allreduce()

MPI_Bcast()



Backward Solve

 Backward Solve
1. The elimination of  the RHS/Solution is 

performed by the process owning the current 
column using the Kokkos parallel_for
across the RHS/Solution vectors

2. The results from the elimination step are 
broadcasted to all the processes within the 
MPI column sub-communicator

3. The KokkosBlas::gemm is then called to 
update the RHS/Solution

4. Send the RHS/Solution vectors are sent to 
the left processes

5. Receive the RHS/Solution vectors from the 
right processes
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Permutation

 Permutation: to “unwrap the results”

 Solver assumes the torus-wrap mapping 
scheme while the input matrix is not torus-
wrapped

 A temporary buffer for global solution vectors 
created

 Kokkos parallel_for to fill the correct 
locations in the global vectors

 MPI_Allreduce to collectively update the 
change
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Experimental Results



Experimental Setup

 Summit system at the ORNL (4608 nodes): evaluating performance of  ADELUS 
with randomly-generated matrices
 Hardware (per node): 2 POWER9 CPUs ( 22 cores/each), 6 V100 GPUs (16GB 

memory/GPU)
o Intra-node connection: NVIDIA's NVLink 2.0

o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network 

 Software environment: GCC 7.4.0, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI 10.3.1

 DPLASMA: IBM XL C/C++ Compiler 16.1.1 instead of  GCC 7.4.0

 SLATE: we use GCC 6.4.0 and ESSL 6.1.0, Netlib SCALAPACK 2.0.2

 Sierra system at the LLNL (4320 nodes): demonstrating performance of  
ADELUS when integrated into a production electromagnetic application 
code, EIGER
 Hardware (per node): 2 POWER9 CPUs ( 22 cores/each), 4 V100 GPUs (16GB 

memory/GPU)
o Intra-node connection: NVIDIA's NVLink 2.0

o Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network 

 Software environment: GCC 7.2.1, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI 10.3.0
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 Single RHS vector and the matrix size is 
increased as we increase the hardware 
resource

 GPU backend: ADELUS runs with one MPI 
rank per GPU.

 CPU backend: ADELUS runs with one MPI 
rank per node (42 cores)

 Baseline: a matrix (NN) represented in 
double complex precision occupied a single 
GPU’s memory

Randomly-Generated Matrices23

1 node 

(NN)

2N

2N

3N

4N

3N

4N

4 nodes 

(2 processes/row)

9 nodes 

(3 processes/row)

16 nodes 

(4 processes/row)

N = 27,882



Load Balancing Verification

 Factorization time on 36 MPI processes (36 GPUs) with the matrix size of  6N6N
(167,292167,292)

 Communication and update contribute the most to the total time

 Communication time is 1.47x-1.6x the update time
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CPU Performance vs. GPU Performance

 A single GPU is 4.9x faster than a 42-core CPU while 100 GPUs are 3.8x faster than 100 42-core CPUs

 Communication overhead increases as processing larger problems (mostly by broadcasting pivot rows and 
exchanging rhs vectors among column processes)

 CPU computation is still the dominant component in the total CPU time

 GPU computation is fast that makes the communication overhead the bottleneck
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CPU execution time GPU execution time with host pinned memory



ADELUS vs. DPLASMA and SLATE

 Tuning DPLASMA and SLATE for their best performance

 ADELUS (43 TFLOPS) outperforms SLATE (38 TFLOPS) while is slower than DPLASMA (57 TFLOPS) 
on 100 CPUs 

 ADELUS is 4.57x faster than SLATE on 144 GPUs

 ADELUS can achieve 1.3 PFLOPS with 900 GPUs (the first complex, dense LU solver reaches PFLOPS 
performance)
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Scalability Analysis27

S= 
FLOPS 𝐦 ranks/GPUs, 𝐧∗N unknowns

FLOPS 𝟏 rank/GPU, 𝟏∗N unknowns

where ranks/GPUs = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

unknowns = 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9N, 10N

Scalability is defined as the normalized 
FLOPS of  multiple MPI processes with 
respect to FLOPS of  a single MPI process 

 The increase of  communication overhead 
results in below ideal scalability in both CPU 
and GPU runs

 ADELUS on CPUs scales more closely to 
the theoretical ideal scalability than 
ADELUS on GPUs

 GPU performance is MPI bound due to  
the increase in the communication cost and  
its high FLOPS

 Scalability needs further improvement



MPI Buffers on Different Memory Spaces

 Both CudaSpace and 
CudaHostPinnedSpace can attain 
performance above 1000 TFLOPs

 Using CUDA-aware MPI can improve the 
performance by 6% since we do not need 
to explicitly buffer data on host memory 
before or after calling the MPI function
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Large-Scale EM Simulation with EIGER29

 Couple EIGER with ADELUS to 
perform large-scale 
electromagnetic simulations on 
the LLNL’s Sierra platform

 First time Petaflops performance 
with a complex, dense LU solver: 
7.72 Petaflops (16.9% efficiency 
) when using 7,600 GPUs on 
1,900 nodes on a 2,564,487-
unknown problem

 ADELUS’s performance is 
affected by the distribution of  the 
matrix on the MPI processes

 Assigning more processes per row 
yields higher performance

Kokkos:initialize()

Kokkos::finalize()

Transfer matrix+RHS to GPU

Transfer solution back to CPU

ADELUS C++ wrapper

Adelus::factor()

Adelus::solve()

Call MPI_INIT()

Call MPI_FINALIZE()

Construct matrix and RHS vector

Post-process solution vector

EIGER (FORTRAN)

Call ADELUS wrapper

Matrix+RHS vec.

Solution vec.

N Nodes (GPUs) Solve time (sec.) TFLOPS Procs/row

226,647 25 (100) 240.5 1291.0 10

1,065,761 310 (1240) 1905.1 1694.5 31

1,322,920 500 (2,000) 6443.9 958.1 20

1,322,920 500 (2,000) 2300.2 2684.1 50

1,322,920 500 (2,000) 2063.6 2991.9 100

2,002,566 1,200 (4,800) 3544.1 6042.6 100

2,564,487 1,900 (7,600) 5825.2 7720.7 80



Conclusions and Future Work

 A parallel, dense, performance-portable, LU solver based on torus-wrap mapping and LU 
factorization algorithm

 Obtaining portability through Kokkos and Kokkos Kernels

 ADELUS’s performance on Summit: 1.397 PFLOPS on 900 GPUs

 The GPU execution is 3.8x faster than the CPU execution 

 ADELUS integrated into an electromagnetic application (EIGER) achieves 7.720 PFLOPS on 
7600 GPUs (a problem of  2.5M unknowns) on Sierra

 Future work:

 Using computation-communication overlapping to improve ADELUS scalability on GPUs

 A hybrid implementation where both CPU and GPU resources are fully utilized to overcome the 
limitation of  the GPU memory
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https://github.com/trilinos/Trilinos/tree/master/packages/adelus

The driver code used for our ADELUS experiments can be found in

https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example

https://github.com/trilinos/Trilinos/tree/master/packages/adelus
https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example

