

ADELUS: A Performance-Portable Dense LU Solver for Distributed-Memory Hardware-Accelerated Systems

Ву

Vinh Dang, Joseph Kotulski, and Sivasankaran Rajamanickam

WACCPD@SC20 - Nov 13, 2020

SAND2020-12737 C

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2 Agenda

- Introduction
- Kokkos and Kokkos Kernels
- Method of Moments for Linear Electromagnetics
- Parallel LU Solver Implementation
 - Distributed, real/complex, dense matrices
 - ADELUS available in Trilinos
- Experimental Results
 - Achieve 7.7 **PFLOPS** when integrated with a real-world application code
- Conclusions and Future Work

3 Introduction

- Solving a dense linear equations system A*X=B is one of the most fundamental problems in numerous applications: physics, mathematics, and engineering
 - Our application of interest: boundary element method in electromagnetics (*method of moments*)
- Despite its high computational complexity, a direct solver (LU factorization) often provides more robust results than iterative solvers for extremely ill-conditioned system matrices
- A distributed-memory, dense LU solver capable of utilizing hardware accelerators available on top supercomputers is in need
- Performance-portability is important since future generation exa-scale HPC architectures are continuously evolving with significantly different architectures and programming models

Near-field and radiation pattern analysis of integrated windscreen antenna (Source: FEKO)

The upcoming Aurora supercomputer (2021) (Source: Intel)

ADELUS's Objectives

- A performance-portable dense LU solver for current and next generation distributed-memory hardware-accelerated HPC platforms
- Using LU factorization with partial pivoting for **double** real/complex dense linear systems in distributed-memory using MPI
- Using torus-wrap mapping scheme for workload distribution
- Leveraging Kokkos and Kokkos Kernels to provide performance portability
- □ Integrating with a real-world application production code and achieving PFLOPS performance

The Summit supercomputer (Source: ORNL)

ADELUS's Objectives

- A performance-portable dense LU solver for current and next generation distributed-memory hardware-accelerated HPC platforms
- Using LU factorization with partial pivoting for **double** real/complex dense linear systems in distributed-memory using MPI
- Using torus-wrap mapping scheme for workload distribution
- Leveraging Kokkos and Kokkos Kernels to provide performance portability
- □ Integrating with a **real-world application production code** and achieving PFLOPS performance

The upcoming El Capitan supercomputer (2023) (Source: Hewlett Packard Enterprise)

Kokkos and Kokkos Kernels

7 Kokkos Overview

Kokkos is a productive, portable, performant, shared-memory programming model.

- is a C++ **library**, not a new language or language extension.
- supports clear, concise, thread-scalable parallel patterns.
- lets you write algorithms once and run on many architectures

e.g. OpenMP on multi-core CPUs, CUDA on NVIDIA GPUs, HIP for AMD GPUs, SYCL for Intel GPUs, ...

- minimizes the amount of architecture-specific implementation details users must know.
- **solves the data layout problem** by using multi-dimensional arrays with architecture-dependent **layouts**

https://github.com/kokkos/kokkos-tutorials/blob/master/Intro-Short/Slides/KokkosTutorial_ATPESC18.pdf

An Abstraction Layer to Prevent Rewriting an Entire Code

8

The Kokkos Lecture Series, "Kokkos at the Center". https://github.com/kokkos/kokkostutorials/blob/main/LectureSeries/KokkosTutorial_01_Introduction.pdf

9 Kokkos Data Management and Execution

A: Column-major order (Fortran-style)

B: Row-major order (C-style)

Christian Trott, "Kokkos: Capabilities Overview". <u>https://github.com/kokkos/kokkos-tutorials/blob/master/KokkosCapabilities.pdf</u> Intel. Developer Guide for Intel Math Kernel Library for Linux. https://software.intel.com/en-us/node/528573

10 Kokkos Kernels

Kokkos Kernels is a library for *node-level*, performance-portable, computational kernels for sparse/dense linear algebra and graph operations, using the Kokkos.

 KK is available publicly both as part of Trilinos and as part of the Kokkos ecosystem

(https://github.com/kokkos/kokkoskernels)

- Building block of a solver, linear algebra library that uses MPI and threads for parallelism, or it can be used stand-alone in an application.
- Generic implementations for various scalar types and data layouts
- Interfaces to vendor-provided kernels available in order to leverage their highperformance libraries
- Several new kernels are being added as needed by the applications

Method of Moments for Linear Electromagnetics

Maxwell's Equations in the Frequency Domain

Maxwell's Equations: Faraday : $\nabla \times \mathbf{E} = -j\omega\mathbf{B}$ Ampere – Maxwell : $\nabla \times \mathbf{H} = \mathbf{J} + j\omega\mathbf{D}$ Electric Gauss : $\nabla \cdot \mathbf{D} = \rho$ Magnetic Gauss : $\nabla \cdot \mathbf{B} = 0$

Wave Equations:

12

$$\nabla^2 \mathbf{A} + \omega^2 \mu \epsilon \mathbf{A} = -\mu \mathbf{J}$$
$$\nabla^2 \Phi + \omega^2 \mu \epsilon \Phi = \rho/\epsilon$$

Instead of solving Maxwell's equations in 3D space via the wave equations, we solve them on the boundary between regions.

For a linear homogeneous, unbounded medium:

$$\begin{split} \mathbf{A} &= \int_{V} \mu \mathbf{J}(\mathbf{r}') g(\mathbf{r} | \mathbf{r}') dv' \\ \Phi &= -\int_{V} \frac{\rho(\mathbf{r}')}{\epsilon} g(\mathbf{r} | \mathbf{r}') dv' \end{split}$$

Free-Space Green's Function:

$$g(\mathbf{r}|\mathbf{r}') = \frac{e^{-jk|\mathbf{r}-\mathbf{r}'|}}{4\pi|\mathbf{r}-\mathbf{r}'|}$$

Vector and Scalar Potentials: $\mathbf{E} = -j\omega\mathbf{A} - \nabla\Phi$ $\mathbf{B} = \nabla \times \mathbf{A}$

Lorenz gauge condition: $\nabla \cdot \mathbf{A} = -j\omega\epsilon\mu\Phi$

> ρ J Obs.pt. ϵ, μ, σ

 \mathbf{r}'

Integral Equations (Boundary Element Method – BEM)

Example of an electric field integral equation (EFIE) for metallic scatterer:

Through the equivalence principle, we consider the **current on the object boundary** instead of the field around and inside the object. Enforcing the boundary condition at the surface:

$$\mathbf{\hat{n}} \times (\mathbf{E_{inc}} + \mathbf{E_{scat}}) = \mathbf{0}$$

where, $\mathbf{E_{scat}} = -j\omega\mu \int_{S'} \left(\mathbf{J_S}(\mathbf{r}')g(\mathbf{r}|\mathbf{r}') + \frac{1}{\omega^2\mu\epsilon} \nabla' \cdot \mathbf{J_S}(\mathbf{r}')\nabla g(\mathbf{r}|\mathbf{r}') \right) d\mathbf{r}$

results in the following integral equation:

13

$$\begin{split} \int_{S'} \mathbf{\hat{n}} \times \left(\mathbf{J}_{\mathbf{S}}(\mathbf{r}') g(\mathbf{r} | \mathbf{r}') + \frac{1}{\omega^2 \mu \epsilon} \nabla' \cdot \mathbf{J}_{\mathbf{S}}(\mathbf{r}') \nabla g(\mathbf{r} | \mathbf{r}') \right) ds' &= \frac{1}{j \omega \mu} \mathbf{\hat{n}} \times \mathbf{E}_{\mathbf{inc}} \\ L\left\{ \mathbf{J}_{\mathbf{S}} \right\} &= \frac{1}{j \omega \mu} \mathbf{\hat{n}} \times \mathbf{E}_{\mathbf{inc}} \end{split}$$

Method of Moments (MoM) 14

Numerical solution of integral equation:

$$L\left\{\mathbf{J}_{\mathbf{S}}\right\} = \frac{1}{j\omega\mu}\mathbf{\hat{n}} \times \mathbf{E_{inc}}$$

Expand unknown in a set of basis functions:

$$\mathbf{J}_{\mathbf{S}}(\mathbf{r}) \approx \sum_{n} I_{n} \mathbf{f}_{\mathbf{n}}(\mathbf{r})$$

Test integral equation with basis functions.

integral equation with basis functions.

$$\int_{S} \mathbf{f}_{\mathbf{m}} \cdot L \{ \mathbf{J}_{\mathbf{S}} \} ds = \frac{1}{j\omega\mu} \int_{S} \mathbf{f}_{\mathbf{m}} \cdot (\hat{\mathbf{n}} \times \mathbf{E}_{inc}) ds$$

$$\overline{\mathbf{Z}}\mathbf{I} = \mathbf{V}$$

$$Z_{m,n} = \int_{f_m} \int_{f_n} \left[j\omega\mu f_m \cdot f_n - \frac{j}{\omega\epsilon} \nabla \cdot f_m \nabla' \cdot f_n \right] \frac{e^{-ikr}}{4\pi r}$$

S.M. Rao, D.R. Wilton, A.W. Glisson, "Electromagnetic scattering by surface of arbitrary shape," IEEE Trans. on Antennas and Propagat., 30(3), 409–418 (1982)

Discretize the scatterers

Divergence-conforming Rao-Wilton-Glisson (RWG) basis functions

Parallel LU Solver Implementation

¹⁶ ADELUS Interface and Storage

- Dense matrix and RHS vectors that are **block-mapped** to the MPI processes
- ADELUS is called by MPI processes with the matrix portions packed with RHS vectors (column-major order) as their inputs
- ADELUS data container is implemented by the Kokkos View for portability

In the host memory:

Kokkos::View<Kokkos::Complex<double>**,Kokkos::LayoutLeft,Kokkos::HostSpace>

In the CUDA device memory:

Kokkos::View<Kokkos::complex<double>**,Kokkos::LayoutLeft,Kokkos::CudaSpace>

A("A", my_rows, my_cols+my_rhs);

A("A", my rows, my cols+my rhs);

- Total number of MPI processes = 6
- Number of processes for a row = 3
- Number of right-hand sides = 2

17 **Torus-Wrap Mapping**

- Advantage: each process has nearly the same workload and the process idle time is minimized
- Column indices assigned to a MPI process constitute a linear sequence with step size P_c

 \square Row indices are in a sequence separated by P_r

- No need to redistribute the block-mapped matrix for torus-wrapped solver
 - A block-mapped system can be solved by a solver assuming a torus-wrapped system.
- Solution vectors are corrected afterwards by straightforward permutations

 $M_{\rm p} = N/P_{\rm r}$

$$N_{\rm p} = N/P_{\rm c}$$

 $P = P_{\iota} \times P_{r}$

- Total number of MPI processes: 6 (*P*=6)
- Number of processes for a row: 3 ($P_c=3$)
- Number of right-hand sides: 2

B.A. Hendrickson, D.E. Womble, "The torus-wrap mapping for dense matrix calculations on massively parallel computers," SIAM J. Sci. Comput. 15(5), 1201–1226(1994)

¹⁸ LU Factorization and Forward Solve

Right-looking variant of the LU factorization with *partial pivoting*

- Kokkos Kernels BLAS interfaces are used for local matrices in each MPI process
 - Calls to optimized vendor library BLAS routines: multi-threaded CPU (IBM's ESSL BLAS), massively parallel GPU architectures (cuBLAS)
- CUDA-aware MPI: simple communication patterns: point-to-point communication and collective communication
- 4 basic steps per iteration:
- 1. Find the pivot: each process **finds** its own local maximum entry in the current column and then **exchanges** for the global pivot value.
- 2. Scale the current column with the pivot value, and generate and **communicate** column update vector from the current column
- 3. Exchange pivot row and diagonal row
- 4. Update the current column, and when saving enough columns, update Z via **GEMM**

<pre>KokkosBlas::iamax()</pre>
<pre>KokkosBlas::scal()</pre>
KokkosBlas::copy()
KokkosBlas::gemm()

MPI Send() MPI Recv() MPI Irecv() MPI Allreduce() MPI Bcast()

19 Backward Solve

Backward Solve

- The elimination of the RHS/Solution is performed by the process owning the current column using the Kokkos parallel_for across the RHS/Solution vectors
- 2. The results from the elimination step are **broadcasted** to all the processes within the MPI column sub-communicator
- 3. The **KokkosBlas::gemm** is then called to update the RHS/Solution
- 4. Send the RHS/Solution vectors are sent to the left processes
- 5. **Receive** the RHS/Solution vectors from the right processes

2. MPI_Bcast 1. elimination

RHS/Solution

4

4

4

4

4

4

4. MPI_Send to the left processes

5. MPI_Irecv from the right processes

Matrix

4

4

5

2

5

2

6

3

6

3

6

4

4

4

2

5

3

6

3

3. KokkosBlas::gemm

20 **Permutation**

Permutation: to "unwrap the results"

- Solver assumes the torus-wrap mapping scheme while the input matrix is not toruswrapped
- A temporary buffer for global solution vectors created
- Kokkos parallel_for to fill the correct locations in the global vectors
- MPI_Allreduce to collectively update the change

Experimental Results

Experimental Setup

22

- Summit system at the ORNL (4608 nodes): evaluating performance of ADELUS with randomly-generated matrices
 - Hardware (per node): 2 POWER9 CPUs (22 cores/each), 6 V100 GPUs (16GB memory/GPU)
 - Intra-node connection: NVIDIA's NVLink 2.0
 - Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network
 - Software environment: GCC 7.4.0, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI 10.3.1
 - DPLASMA: IBM XL C/C++ Compiler 16.1.1 instead of GCC 7.4.0
 - SLATE: we use GCC 6.4.0 and ESSL 6.1.0, Netlib SCALAPACK 2.0.2
- Sierra system at the LLNL (4320 nodes): demonstrating performance of ADELUS when integrated into a production electromagnetic application code, EIGER
 - Hardware (per node): 2 POWER9 CPUs (22 cores/each), 4 V100 GPUs (16GB memory/GPU)
 - Intra-node connection: NVIDIA's NVLink 2.0
 - Inter-node connection: Mellanox dual-rail enhanced data rate (EDR) InfiniBand network
 - Software environment: GCC 7.2.1, CUDA 10.1.243, ESSL 6.2.0, Spectrum MPI 10.3.0

²³ Randomly-Generated Matrices

- Single RHS vector and the matrix size is increased as we increase the hardware resource
- GPU backend: ADELUS runs with one MPI rank per GPU.
- CPU backend: ADELUS runs with one MPI rank per node (42 cores)
- Baseline: a matrix (N×N) represented in double complex precision occupied a single GPU's memory

N = 27,882

4 Load Balancing Verification

Communication and update contribute the most to the total time

Communication time is 1.47x-1.6x the update time

24

CPU Performance vs. GPU Performance

25

CPU execution time

GPU execution time with host pinned memory

A single GPU is 4.9x faster than a 42-core CPU while 100 GPUs are 3.8x faster than 100 42-core CPUs

- Communication overhead increases as processing larger problems (mostly by broadcasting pivot rows and exchanging rhs vectors among column processes)
- **CPU** computation is still the dominant component in the total CPU time
- **GPU** computation is fast that makes the communication overhead the bottleneck

ADELUS vs. DPLASMA and SLATE

26

V100 GPUs, Double Complex (N=27882) 1.0E+07 **1316 TFLOPS** 1.0E+06 **233 TFLOPS** Sd 01.0E+05 0149 1.0E+04 1.0E+05 **51 TFLOPS** ADELUS ----SLATE 1.0E+03 1.0E+02 76 GPUS 24M 269U5'69U5' SCRUSS -6GRUS' ,9GRUS' 21 GPUS' AGPUSY 900690513 AA GPUS' GPUs, Unknowns **GPU** performance

□ Tuning DPLASMA and SLATE for their best performance

- ADELUS (43 TFLOPS) outperforms SLATE (38 TFLOPS) while is slower than DPLASMA (57 TFLOPS) on 100 CPUs
- □ ADELUS is 4.57x faster than SLATE on 144 GPUs

□ ADELUS can achieve 1.3 PFLOPS with 900 GPUs (the first complex, dense LU solver reaches PFLOPS performance)

27 Scalability Analysis

- Scalability is defined as the normalized FLOPS of multiple MPI processes with respect to FLOPS of a single MPI process
- The increase of communication overhead results in below ideal scalability in both CPU and GPU runs
- ADELUS on CPUs scales more closely to the theoretical ideal scalability than ADELUS on GPUs
- GPU performance is **MPI bound** due to the increase in the communication cost and its high FLOPS
- Scalability needs further improvement

where ranks/GPUs = 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 unknowns = 1N, 2N, 3N, 4N, 5N, 6N, 7N, 8N, 9N, 10N

²⁸ MPI Buffers on Different Memory Spaces

- Both CudaSpace and CudaHostPinnedSpace can attain performance above 1000 TFLOPs
- □ Using CUDA-aware MPI can improve the performance by 6% since we do not need to explicitly buffer data on host memory before or after calling the MPI function

CudaSpace vs CudaHostPinnedSpace Double Complex (N=27882)

²⁹ Large-Scale EM Simulation with EIGER

- Couple EIGER with ADELUS to perform large-scale electromagnetic simulations on the LLNL's Sierra platform
- First time Petaflops performance with a complex, dense LU solver:
 7.72 Petaflops (16.9% efficiency) when using 7,600 GPUs on 1,900 nodes on a 2,564,487-unknown problem
- ADELUS's performance is affected by the distribution of the matrix on the MPI processes
 - Assigning more processes per row yields higher performance

	Ν	Nodes (GPUs)	Solve time (sec.)	TFLOPS	Procs/row
	226,647	25 (100)	240.5	1291.0	10
1,0	065,761	310 (1240)	1905.1	1694.5	31
1,3	22,920	500 (2,000)	6443.9	958.1	20
1,3	22,920	500 (2,000)	2300.2	2684.1	50
1,3	22,920	500 (2,000)	2063.6	2991.9	100
2,0	002,566	1,200 (4,800)	3544.1	6042.6	100
2,5	64,487	1,900 (7,600)	5825.2	7720.7	80

30 **Conclusions and Future Work**

- A parallel, dense, performance-portable, LU solver based on torus-wrap mapping and LU factorization algorithm
- Obtaining portability through Kokkos and Kokkos Kernels
- ADELUS's performance on Summit: 1.397 PFLOPS on 900 GPUs
- □ The GPU execution is 3.8x faster than the CPU execution
- ADELUS integrated into an electromagnetic application (EIGER) achieves 7.720 PFLOPS on 7600 GPUs (a problem of 2.5M unknowns) on Sierra
- **Future** work:
 - Using computation-communication overlapping to improve ADELUS scalability on GPUs
 - A hybrid implementation where both CPU and GPU resources are fully utilized to overcome the limitation of the GPU memory

https://github.com/trilinos/Trilinos/tree/master/packages/adelus

The driver code used for our ADELUS experiments can be found in <u>https://github.com/trilinos/Trilinos/tree/master/packages/adelus/example</u>

Acknowledgment

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.