
Performance and Portability of a Linear Solver Across
Emerging Architectures

Eric Nielsen and Aaron Walden

NASA Langley Research Center (LaRC)

https://fun3d.larc.nasa.gov

Mohammad Zubair

Old Dominion University (ODU)

This research was supported in part by the NASA Aeronautics Research Mission Directorate Transformational Tools and
Technologies Project and the NASA Langley Research Center High Performance Computing Incubator (LaRC HPCI).

Overview

• FUN3D is a CFD software suite from NASA Langley that solves the Navier-Stokes

equations on fully unstructured mixed element meshes

• This work is an exploration of the performance and portability of FUN3D’s principal

linear solver across a diverse set of established and emerging HPC architectures

• We first attempt to establish a “speed of light” benchmark implementation of the

solver on each architecture

• We then attempt to achieve that speed with a variety of higher-level programming

models, including those which emphasize performance portability

• We have not yet studied the portability of the same code across architectures,

which is the goal of future work

2

FUN3D

3

• FUN3D solves the Navier-Stokes equations of fluid dynamics using implicit time integration

on general unstructured grids

• 2nd order finite volume discretization

• An approximate nearest-neighbor linearization of the residual equations for each control

volume gives rise to a large tightly-coupled system of block-sparse linear equations

• Written predominantly in Fortran 90; MPI parallelism with limited OpenMP support on CPUs

and CUDA support on NVIDIA GPUs

Multicolor Linear Solver

4

FUN3D uses a series of multicolor point-implicit sweeps to form an apx. solution to Ax = b

• Color by rows which share no adjacent unknowns; re-order rows by color contiguously

• Unknowns of the same color carry no data dependency and may be updated in parallel

• Updates of unknowns for each color use the latest updated values for other colors

• The overall process may be repeated using several outer sweeps over the entire system

15

2

28
1

16

38

17

5

40

29

3

39

4
30

19

42

10
20

33

7

6
21

25

8

37

41

18

31

11

34

3532

23
14

22
9

26

12

13
24

36

43

44

27

Multicolor Linear Solver: Basics

5

• Implicit scheme results in linear systems of equations:

o 𝐴 Δ𝑞=𝑏, 𝐴 is a sparse 𝑛×𝑛 block matrix

o Typically 14-19 blocks per row

o block is of size 𝑛𝑏×𝑛𝑏 (typically, 𝑛𝑏 = 5)

• Matrix 𝐴 is segregated into two separate matrices:

o 𝐴≡𝑂+ 𝐷, where O and 𝐷 represent the off-diagonal and diagonal blocks
of 𝐴

o 𝐷 is always stored in double precision (FP64)

o O is typically stored in single precision (FP32)

• Prior to performing each linear solve, each diagonal block 𝐷 is decomposed

in-place into lower and upper triangular matrices

Multicolor Linear Solver: Memory Layout

6

Sparse Structure of Matrix O

[x indicates a non-zero block]

Matrix O with a 2 × 2 Block Size

CSR Storage for the Matrix to the left

Multicolor Linear Solver: Challenges

7

• Indirect memory addressing (for vector Δ𝑞)

• Low arithmetic intensity (≈0.5 flops/byte) – memory bound on CPU and GPU

• Number of blocks per row varies, meaning most accesses are not aligned

• The number of rows associated with a color, and thus the coarse-grained

parallelism available, can vary significantly

• To support strong scalability, the single node performance for light workloads

should be good

HPC Architectures

8

Abbreviation
Cores / SMs /

Compute Units

Vector / Warp

Length, SP

Peak

Bandwidth,

GB/s

Dual-socket Intel Xeon Skylake 6148 SKL 40 16 256

Intel Knights Landing 7230 KNL 64 16 485

Dual-socket Marvell Thunder X2 TX2 56 4 318

NEC SX-Aurora Tsubasa (NUMA-2) VE 8 512 1220

NVIDIA Tesla V100 V100 80 32 900

NVIDIA Tesla A100 A100 128 32 1600

AMD Radeon Instinct MI50 MI50 60 64 1024

Experimental Setup

9

• Transonic turbulent flow over a semispan wing-body configuration

• 1,123,718 grid vertices, 1,172,171 prisms, 3,039,656 tetrahedra, and 7,337

pyramids

• 18,998,518 nonzero off-diagonal blocks; average 17 off-diagonal blocks per

row; 4.5 GB memory footprint

• The domain is decomposed over a number of MPI ranks; typically, this

number is 1 per NUMA domain (or device)

• For CPUs, OpenMP threads are added if the number of ranks is less than the

number of processing elements on the node

• Timings are recorded for 15 sweeps over the linear system on a single device

(GPU) or node (CPU)

SKL/KNL Solver Benchmark

10

• Written in AVX512 vector intrinsics

• Map 3 5x5 blocks  5 vector registers, accumulate partial sums

• Use register permutations to add partial sums

• Triangular solves are vectorized, but limited due to data dependencies

• Prefetch current row’s data into L1 and next row’s data into L2

• Speedup over legacy Fortran apx. 1.7x for KNL, 1.13x for SKL, though for

SKL, this rises to 1.5x if run on a single core

• On KNL, half the speedup is due to prefetching, on SKL it does not help

SKL/KNL Solver Benchmark: Matvec

11
0

q11

q11

q11

q11

q11

q12

q12

q12

q12

q12

q13

q13

q13

q13

q13

0 0

q14

q14

q14

q14

q14

q15

q15

q15

q15

q15

q21

q21

q21

q21

q21

0

**

A
C
C
U
M
U
L
A
T
O
R

-= -=

0

q22

q22

q22

q22

q22

q23

q23

q23

q23

q23

q24

q24

q24

q24

q24

0

*-=

0

q25

q25

q25

q25

q25

q31

q31

q31

q31

q31

q32

q32

q32

q32

q32

0

*-=

0

q33

q33

q33

q33

q33

q34

q34

q34

q34

q34

q35

q35

q35

q35

q35

0

*-=

_mm512_maskz_loadu_ps()

O: mem

q24

q25

q31

q32

q33

q34

q35

Δ
Q

:
m

e
m_
m
m
5
1
2
_
m
a
s
k
_
e
x
t
l
o
a
d
_
p
s
(
)

SKL/KNL Solver Benchmark: Triangular Solves

12

D: mem d11 d21 d31 d41 d51 d12 d22 d32 d42 d52 d13 d23 d33 d43 d53 d14 d24 d34 d44 d54 d15 d25 d35 d45 d55

X

d21

d31

d41

d51

b1

b1

b1

b1

b1

X1

X2

X3

X4

x5

X

X

d32

d42

d52

b2

b2

b2

b2

b2

X

X

X

d43

d53

b3

b3

b3

b3

b3

X

X

X

X

d54

b4

b4

b4

b4

b4

-= -= -= -=

_mm512_mask3_fnmadd_pd()

__m512d d1

_mm512_loadu_pd()

__m512d d2

_mm512_loadu_pd()

__m512d d3

_mm512_loadu_pd()

diag elem, so

extload this

when needed_mm512_mask_blend_pd()

_mm512_permutevar_epi32()

unset mask bit

TX2 Solver Benchmark

13

• Written in Neon vector intrinsics; 128-bit vector holds 4xFP32

• Map 4 rows per column to

1 register, 5th row done

with scalars

• Some performance improvement by prefetching the vector for the

subsequent block

• Overall speedup over legacy Fortran solver of apx. 1.13x, similar to AVX512

on CPU

VE Solver Benchmark

14

• The long vector (512 for FP32) is difficult to use efficiently with CSR layout

• Legacy Fortran (CSR) is 10.0x slower on VE than SKL

• By interchanging the loop over blocks and the loop over rows, performance

improves from 10.0x relative slowdown to 2.2x

• ELLPACK layout improves performance a further 3.0x (to 1.35x speedup

over SKL), but limited by padding as the max number of nonzero blocks is

1.7x the average

• SELL-C-σ layout improves on ELLPACK by sorting groups of σ rows and

zero-padding groups of C rows to the maximum row length in the group

• SELL-C-σ layout improves performance by a further 1.25x

• We sort all rows in each color and pad rows in groups of the vector length

• Use NEC compiler vreg directives to treat local arrays as vector registers

V100/A100 Solver Benchmark

15

• Written in CUDA C++

• Map 25 threads to a 5x5 block, 1 thread per entry

• Loop over blocks in a row, multiplying by the vector and accumulating

• Use shuffle instructions to reduce 25 sums to 5

• Use 25 threads to load 𝐷 into shared memory

• Tune the number of warps per thread block to maximize performance; each

warp processes 1 row of the matrix

MI50 Solver Benchmark

16

• Written in HIP

• Code is very similar to the CUDA solver, but each wavefront processes 2

rows: the first 32 threads (25 active) process 1 row, the remaining process a

second row

• Aggregation is done in shared memory instead of using shuffles

Higher-level Framework Optimization

17

• We attempted to match the performance of our low-level optimized

benchmarks using higher-level frameworks

• Thus far, this has only been done for NVIDIA GPUs

• The question to answer is whether or not the framework can deliver the same

performance as a lower-level optimized code

• The structure of the CUDA C++ solver is used as a template; having this

available makes the optimization process much easier

• Thus far, the frameworks studied are: OpenACC, SYCL, HIP, and OCCA

OpenACC/SYCL

18

OpenACC

• Implementation closely follows the CUDA C++ solver

• CUDA block and thread launch parameters are replaced by loops

• Shared memory is used for aggregation instead of shuffles

SYCL

• Uses Codeplay DPC++ compiler for NVIDIA GPUs (CUDA)

• Implementation closely follows the CUDA C++ solver

• Shared memory is used for aggregation instead of shuffles

HIP/OCCA

19

HIP

• HIPify tool converts CUDA C++ to HIP, which leaves the CUDA C++ solver

code unchanged in this case

OCCA

• Implementation closely follows the CUDA C++ solver

• CUDA block and thread launch parameters are replaced by for loops

• Shared memory is used for aggregation instead of shuffles

Results

20

• The results table on the following slide shows relative performance

normalized to the performance of the legacy Fortran code on SKL

• It also shows the percent of peak bandwidth obtained (value is computed

based on the minimum number of bytes that must pass through main

memory)

• The higher-level frameworks can match the performance of the CUDA C++

solver to within 3.0%

Caveats

• TX2 performance should not be taken as representative as we used a

prototype system with significant anomalies in memory performance

• The VE optimized benchmark should not be considered complete

• A100 results use code tuned for V100

SKL KNL TX2 VE V100 A100 MI50

Fortran (CSR)
1.0

69.1%

0.79

31.3%

0.97

53.9

0.53

7.7%

Fortran

(SELL-C-σ)
1.84

26.7%

OpenACC
3.77

74.1%

5.22

57.8%

CUDA C++
3.86

75.8%

6.08

67.3%

HIP
3.85

75.8%

2.90

51.3%

SYCL for CUDA
3.79

74.5%

Vector Intrinsics
1.13

78.3%

1.34

52.8%

1.13

62.6%

OCCA
3.76

74.0%

2.89

51.2%

Summary

22

• Optimized linear solver benchmarks were implemented for a variety of

emerging and established HPC architectures

• For NVIDIA GPUs, the solver was implemented using a number of higher-

level frameworks

• Results show the higher-level frameworks were able to match the

performance of optimized CUDA C++ benchmark to within 3.0%

Future Work

• Additional frameworks and architectures will be studied

• Performance portability of the higher-level frameworks will be studied; i.e.,

when optimized for NVIDIA GPUs, how do the framework solvers perform on

other architectures and how do optimizations for one architecture affect

performance on the others?

