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Overview

• FUN3D is a CFD software suite from NASA Langley that solves the Navier-Stokes 

equations on fully unstructured mixed element meshes

• This work is an exploration of the performance and portability of FUN3D’s principal 

linear solver across a diverse set of established and emerging HPC architectures

• We first attempt to establish a “speed of light” benchmark implementation of the 

solver on each architecture

• We then attempt to achieve that speed with a variety of higher-level programming 

models, including those which emphasize performance portability

• We have not yet studied the portability of the same code across architectures, 

which is the goal of future work
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FUN3D
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• FUN3D solves the Navier-Stokes equations of fluid dynamics using implicit time integration 

on general unstructured grids

• 2nd order finite volume discretization

• An approximate nearest-neighbor linearization of the residual equations for each control 

volume gives rise to a large tightly-coupled system of block-sparse linear equations

• Written predominantly in Fortran 90; MPI parallelism with limited OpenMP support on CPUs 

and CUDA support on NVIDIA GPUs



Multicolor Linear Solver
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FUN3D uses a series of multicolor point-implicit sweeps to form an apx. solution to Ax = b

• Color by rows which share no adjacent unknowns; re-order rows by color contiguously

• Unknowns of the same color carry no data dependency and may be updated in parallel

• Updates of unknowns for each color use the latest updated values for other colors

• The overall process may be repeated using several outer sweeps over the entire system
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Multicolor Linear Solver: Basics
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• Implicit scheme results in linear systems of equations:

o 𝐴 Δ𝑞=𝑏,  𝐴 is a sparse 𝑛×𝑛 block matrix

o Typically 14-19 blocks per row

o block is of size 𝑛𝑏×𝑛𝑏 (typically, 𝑛𝑏 = 5)

• Matrix 𝐴 is segregated into two separate matrices:

o 𝐴≡𝑂+ 𝐷,  where O and 𝐷 represent the off-diagonal and diagonal blocks 
of 𝐴

o 𝐷 is always stored in double precision (FP64)

o O is typically stored in single precision (FP32)

• Prior to performing each linear solve, each diagonal block 𝐷 is decomposed 

in-place into lower and upper triangular matrices



Multicolor Linear Solver: Memory Layout
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Sparse Structure of Matrix O

[x indicates a non-zero block]

Matrix O with a 2 × 2 Block Size

CSR Storage for the Matrix to the left



Multicolor Linear Solver: Challenges
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• Indirect memory addressing (for vector Δ𝑞)

• Low arithmetic intensity (≈0.5 flops/byte) – memory bound on CPU and GPU

• Number of blocks per row varies, meaning most accesses are not aligned

• The number of rows associated with a color, and thus the coarse-grained 

parallelism available, can vary significantly

• To support strong scalability, the single node performance for light workloads 

should be good 



HPC Architectures
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Abbreviation
Cores / SMs / 

Compute Units

Vector / Warp 

Length, SP

Peak 

Bandwidth, 

GB/s

Dual-socket Intel Xeon Skylake 6148 SKL 40 16 256

Intel Knights Landing 7230 KNL 64 16 485

Dual-socket Marvell Thunder X2 TX2 56 4 318

NEC SX-Aurora Tsubasa (NUMA-2) VE 8 512 1220

NVIDIA Tesla V100 V100 80 32 900

NVIDIA Tesla A100 A100 128 32 1600

AMD Radeon Instinct MI50 MI50 60 64 1024



Experimental Setup
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• Transonic turbulent flow over a semispan wing-body configuration

• 1,123,718 grid vertices, 1,172,171 prisms, 3,039,656 tetrahedra, and 7,337 

pyramids

• 18,998,518 nonzero off-diagonal blocks; average 17 off-diagonal blocks per 

row; 4.5 GB memory footprint

• The domain is decomposed over a number of MPI ranks; typically, this 

number is 1 per NUMA domain (or device)

• For CPUs, OpenMP threads are added if the number of ranks is less than the 

number of processing elements on the node

• Timings are recorded for 15 sweeps over the linear system on a single device 

(GPU) or node (CPU)



SKL/KNL Solver Benchmark
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• Written in AVX512 vector intrinsics

• Map 3 5x5 blocks  5 vector registers, accumulate partial sums

• Use register permutations to add partial sums

• Triangular solves are vectorized, but limited due to data dependencies

• Prefetch current row’s data into L1 and next row’s data into L2

• Speedup over legacy Fortran apx. 1.7x for KNL, 1.13x for SKL, though for 

SKL, this rises to 1.5x if run on a single core

• On KNL, half the speedup is due to prefetching, on SKL it does not help



SKL/KNL Solver Benchmark: Matvec
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SKL/KNL Solver Benchmark: Triangular Solves
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TX2 Solver Benchmark
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• Written in Neon vector intrinsics; 128-bit vector holds 4xFP32

• Map 4 rows per column to 

1 register, 5th row done 

with scalars

• Some performance improvement by prefetching the vector for the 

subsequent block

• Overall speedup over legacy Fortran solver of apx. 1.13x, similar to AVX512 

on CPU



VE Solver Benchmark
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• The long vector (512 for FP32) is difficult to use efficiently with CSR layout

• Legacy Fortran (CSR) is 10.0x slower on VE than SKL

• By interchanging the loop over blocks and the loop over rows, performance 

improves from 10.0x relative slowdown to 2.2x

• ELLPACK layout improves performance a further 3.0x (to 1.35x speedup 

over SKL), but limited by padding as the max number of nonzero blocks is 

1.7x the average

• SELL-C-σ layout improves on ELLPACK by sorting groups of σ rows and 

zero-padding groups of C rows to the maximum row length in the group

• SELL-C-σ layout improves performance by a further 1.25x

• We sort all rows in each color and pad rows in groups of the vector length

• Use NEC compiler vreg directives to treat local arrays as vector registers



V100/A100 Solver Benchmark
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• Written in CUDA C++

• Map 25 threads to a 5x5 block, 1 thread per entry

• Loop over blocks in a row, multiplying by the vector and accumulating

• Use shuffle instructions to reduce 25 sums to 5

• Use 25 threads to load 𝐷 into shared memory

• Tune the number of warps per thread block to maximize performance; each 

warp processes 1 row of the matrix



MI50 Solver Benchmark
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• Written in HIP

• Code is very similar to the CUDA solver, but each wavefront processes 2 

rows: the first 32 threads (25 active) process 1 row, the remaining process a 

second row

• Aggregation is done in shared memory instead of using shuffles



Higher-level Framework Optimization
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• We attempted to match the performance of our low-level optimized 

benchmarks using higher-level frameworks

• Thus far, this has only been done for NVIDIA GPUs

• The question to answer is whether or not the framework can deliver the same 

performance as a lower-level optimized code

• The structure of the CUDA C++ solver is used as a template; having this 

available makes the optimization process much easier

• Thus far, the frameworks studied are: OpenACC, SYCL, HIP, and OCCA



OpenACC/SYCL
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OpenACC

• Implementation closely follows the CUDA C++ solver

• CUDA block and thread launch parameters are replaced by loops

• Shared memory is used for aggregation instead of shuffles

SYCL

• Uses Codeplay DPC++ compiler for NVIDIA GPUs (CUDA)

• Implementation closely follows the CUDA C++ solver

• Shared memory is used for aggregation instead of shuffles



HIP/OCCA
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HIP

• HIPify tool converts CUDA C++ to HIP, which leaves the CUDA C++ solver 

code unchanged in this case

OCCA

• Implementation closely follows the CUDA C++ solver

• CUDA block and thread launch parameters are replaced by for loops

• Shared memory is used for aggregation instead of shuffles



Results
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• The results table on the following slide shows relative performance 

normalized to the performance of the legacy Fortran code on SKL

• It also shows the percent of peak bandwidth obtained (value is computed 

based on the minimum number of bytes that must pass through main 

memory)

• The higher-level frameworks can match the performance of the CUDA C++ 

solver to within 3.0%

Caveats

• TX2 performance should not be taken as representative as we used a 

prototype system with significant anomalies in memory performance

• The VE optimized benchmark should not be considered complete

• A100 results use code tuned for V100



SKL KNL TX2 VE V100 A100 MI50

Fortran (CSR)
1.0

69.1%

0.79

31.3%

0.97

53.9

0.53

7.7%

Fortran

(SELL-C-σ)
1.84

26.7%

OpenACC
3.77

74.1%

5.22

57.8%

CUDA C++
3.86

75.8%

6.08

67.3%

HIP
3.85

75.8%

2.90

51.3%

SYCL for CUDA
3.79

74.5%

Vector Intrinsics
1.13

78.3%

1.34

52.8%

1.13

62.6%

OCCA
3.76

74.0%

2.89

51.2%



Summary
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• Optimized linear solver benchmarks were implemented for a variety of 

emerging and established HPC architectures

• For NVIDIA GPUs, the solver was implemented using a number of higher-

level frameworks

• Results show the higher-level frameworks were able to match the 

performance of optimized CUDA C++ benchmark to within 3.0%

Future Work

• Additional frameworks and architectures will be studied

• Performance portability of the higher-level frameworks will be studied; i.e., 

when optimized for NVIDIA GPUs, how do the framework solvers perform on 

other architectures and how do optimizations for one architecture affect 

performance on the others?


