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Introduction 

• Scientific simulation software needs to keep up with rapid 
development of computer systems to benefit from improving 
hardware capabilities

• Implementing hardware/system specific software is costly; thus, 
developing maintainable code with portability and performance is 
required for high productivity

• Especially important for real-world programs with sophisticated algorithms 
and many lines of code

• OpenACC is an option for performance-portable code development 
for both CPU- and GPU-based systems

• Porting sophisticated programs by OpenACC and sharing the process can be 
useful for porting other applications
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Target problem: Implicit low-order finite-element analysis

• De-facto standard for manufacturing and Earth sciences

• Consists of iterative solvers with preconditioners
• Involves random memory accesses and complex communication patterns

• In WACCPD 2016 & 2017 we demonstrated that CPU-based finite-
element solvers can be ported to GPU systems using OpenACC with 
high performance (Best Paper Award in WACCPD 2016 & 2017)
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K computer Reedbush-H

# of nodes 20 10

CPU/node 1 x SPARC64 

VIIIfx

2 x Intel Xeon

E5-2695 v4

GPU/node
-

2 x NVIDIA 

P100 

Hardware peak FLOPS 

ratio
1 41.4

Memory bandwidth ratio 1 11.4

OpenACC ported code:

14.2 x speedup

Yamaguchi et al., Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense 

Computation using OpenACC, WACCPD 2017



Target problem: Implicit low-order finite-element analysis

• In SC18, we developed a more sophisticated solver algorithm for Summit
• Incorporates artificial intelligence (AI) and FP16-FP21-FP32-FP64 transprecision

computing

• Thoroughly optimized for NVIDIA Tesla V100 GPUs with CUDA; extremely high 
performance (selected as Gordon Bell Prize Finalist)

• However, lacks portability and maintainability
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Target problem: Implicit low-order finite-element analysis

• In this paper, we port the SC18 solver algorithm to GPUs using 
OpenACC

• Demonstrate that OpenACC porting achieves high speedup with small 
developmental cost even for sophisticated application with non-standard data-
types (FP21)
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Overview of SC18 solver
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Scientific target: Urban earthquake modeling
• Unstructured mesh with implicit solvers required for urban earthquake 

modeling
• We have been developing high-performance implicit unstructured finite-element solvers 

(SC14 & SC15 Gordon Bell Prize Finalist, SC16 best poster)

• However, simulation incorporating coupling of ground & structure requires 
finer resolution

• Traditional physics-based modeling too costly
• Can we combine use of data analytics to solve this problem?
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SC14, SC15 & SC16 solvers: 

ground simulation only Fully coupled ground-structure simulation with underground structures



Data analytics and equation based 
modeling

• Equation based modeling
• Highly precise, but costly

• Data analytics
• Fast inferencing, but accuracy not as high

• Use both methods to complement each other
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Data analytics and equation based 
modeling

• Equation based modeling
• Highly precise, but costly

• Data analytics
• Fast inferencing, but accuracy not as high

• Use both methods to complement each other
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Data analytics Equation based modeling

(25-fold speedup 

from without AI)

AI for accelerating 

equation based 

solver

In SC18 solver:



Difficulties of using data analytics to 
accelerate equation based modeling
• Target: Solve A x = f

• Difficulty in using data analytics in solver
• Data analytics results are not always accurate
• We need to design solver algorithm that enables robust and cost 

effective use of data analytics, together with uniformity for 
scalability on large-scale systems

• Candidates: Guess A-1 for use in preconditioner
• For example, we can use data analytics to determine the fill-in of 

matrix; however, challenging for unstructured mesh where sparseness 
of matrix A is nonuniform (difficult for load balancing and robustness)

➡ Manipulation of A without additional information may be difficult…
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Designing solver suitable for use with AI

• Use information of underlying governing equation
• Governing equation’s characteristics with discretization conditions 

should include information about the difficulty of convergence in solver

• Extract parts with bad convergence using AI and extensively solve 
extracted part
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Governing equation

A x = f

Equation based modeling

Discretization



Solver suitable for use with AI

• Transform solver such 
that AI can be used 
robustly

• Select part of domain to 
be extensively solved in 
adaptive conjugate 
gradient solver

• Based on the governing 
equation’s properties, 
part of problem with bad 
convergence is selected 
using AI
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Adaptive Conjugate Gradient iteration

(2nd order tetrahedral mesh)

PreCGc (1st order tetrahedral mesh)

Approximately solve Ac zc = rc

PreCGc
part (1st order tetrahedral mesh)

Approximately solve Acp zcp = rcp

PreCG (2nd order tetrahedral mesh)

Approximately solve A z = r
L

o
o

p
 u

n
ti
l 
c
o

n
v
e

rg
e

d

Use zc as initial solution

Use zcp as initial solution

Use z for search direction

AI preconditioner – use to roughly solve A z = r



How to select part of problem using AI

• In discretized form, governing equation becomes function of 
material property, element and node connectivity and 
coordinates

• Train an Artificial Neural Network (ANN) to guess the degree of 
difficulty of convergence from these data

1313Whole city model Extracted part by AI (about 1/10 of whole model)



Performance of AI-enhanced solver

• FLOP count decreased by 5.56-times from PCGE (standard 
solver; Conjugate Gradient solver with block Jacobi 
preconditioning)
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Without AI With AI

CG iterations 132,665 88

PreCGc iterations - 5,803

PreCGc
part iterations - 26,826

PreCG iterations - 3,103

FLOPS count 184.7 PFLOP 33.2 PFLOP



Performance of AI-enhanced solver on K computer/Summit

• PCGE: standard solver; Conjugate Gradient solver with block Jacobi preconditioning

• SC14: Gordon Bell Prize finalist solver (with multi-grid & mixed-precision arithmetic)
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GPU implementation of SC18 solver

• CUDA is used for Summit

• Optimized codes for better performance 
• Specific descriptions for FP16 computations on 

NVIDIA Tesla V100 GPUs were applied

• Lacks portability and maintainability
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const half2 dc_vec1 = half2(dc[1], dc[1]);
const half2 dc_vec2 = half2(dc[2], dc[2]);
const half2 dc_vec3 = half2(dc[3], dc[3]);
const half2 dc_vec4 = half2(dc[4], dc[4]);

tmp1_vec = __hadd2(Bu_vec0,Bu_vec1);
tmp1_vec = __hadd2(tmp1_vec,Bu_vec2);
tmp2_vec = __hmul2(dc_vec1,tmp1_vec);

DBu_vec0 = __hmul2(dc_vec0,Bu_vec0);
DBu_vec0 = __hadd2(DBu_vec0,tmp2_vec);
DBu_vec1 = __hmul2(dc_vec0,Bu_vec1);
DBu_vec1 = __hadd2(DBu_vec1,tmp2_vec);
DBu_vec2 = __hmul2(dc_vec0,Bu_vec2);
DBu_vec2 = __hadd2(DBu_vec2,tmp2_vec);
DBu_vec3 = __hmul2(dc_vec2,Bu_vec3);
DBu_vec4 = __hmul2(dc_vec3,Bu_vec4);
DBu_vec5 = __hmul2(dc_vec4,Bu_vec5);

…
…

Example code 

using CUDA



Summary of first half of talk

• We try to port our SC18 Gordon Bell Prize finalist solver by 
OpenACC in this paper

• The SC18 solver uses artificial intelligence to improve 
performance from previous solvers

• High performance attained on Summit; however, maintainability 
and portability of the code is low

• From now, we will talk about OpenACC porting of SC18 solver 
to improve maintainability and portability keeping the high 
performance
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OpenACC-based 
implementation of solver
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Porting strategy using OpenACC

Demonstrate that the performance is acceptable compared to 
that in CUDA implementations by following procedures

1. Baseline implementations
• Define where to apply OpenACC

• Minimize data transfer between CPU and GPUs

• Insert directives to parallelize loops

2. Introduction of our custom data type FP21

3. Miscellaneous optimizations for better performance 
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Baseline implementation of OpenACC
Define where to apply OpenACC
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Read data

Output vector x

Solve Ax=b

#pragma acc data copy(…) {

}

Training/Inference of the AI 

#pragma acc update host(err)

Check convergence

CPU computation

GPU computation

Data transfer between CPU and GPUs

is minimized in the solver 

• Only in convergence check part

• GPUDirect is used for 

MPI point-to-point communication

Computation



Baseline implementation of OpenACC
Insertion of some directives for
parallel computation

Example for 
sparse-matrix vector multiplication

• Collapse element-wise loop and 
timestep-wise loop to extract 
parallelism 
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1 #pragma acc parallel loop collapse(2)

2 for(i_ele = 0; i_ele < (*n_element); i_ele++){

3 for(i_vec = 0; i_vec < (*n_vector); i_vec++){

4 cny0 = connect[i_ele][0];

5 cny1 = connect[i_ele][1];

6 …

7 cny9 = connect[i_ele][9];

8

9 u0x = u[cny0][0][i_vec];

10 u0y = u[cny0][1][i_vec];

11 u0z = u[cny0][2][i_vec];

12 …

13 u9z = u[cny9][2][i_vec];

14

15 Au0x = …

16 … 

17 Au9z = …

18

19 #pragma acc atomic

20 r[cny0][0][cny0] += Au0x;

21 …

22 #pragma acc atomic

23 r[cny9][2][cny9] += Au9z;

24 }

25 }



Introduction of custom data type: FP21
• Most computation in CG loop is memory bound computation

• However, it’s impossible to use FP16 or bfloat16 for whole vector 
• Small dynamic range easily leads to overflow/underflow

• Less accuracy hamper the convergence of the solver

• Define custom data type FP21 numbers

S e x p o n e n t f r a c t i o n

S e x p o n e n t f r a c t i o n

Single precision

(FP32, 32 bits)

(FP21, 21 bits)

1bit sign + 8bits exponent + 23bits fraction

1bit sign + 8bits exponent + 12bits fraction

S e x p f r a c t i o n
Half precision

(FP16, 16 bits)
1bit sign + 5bits exponent + 10bits fraction

S e x p o n e n t f r a c
(bfloat16, 16 bits)

1bit sign + 8bits exponent + 7bits fraction



Implementation of FP21 computation

• Not supported in hardware, used only for storing
• FP21(stored)⇐bit operation⇒FP32(computed)

• FP21×3 are stored into 64bit array
• We are solving 3D finite element solver, so x, y, and z components can be 

stored as one components of 64 bits array

• 1/3 of memory consumption compared to FP64 variables

• This data type is used only in the preconditioning part

64bit

FP21, 21bit FP21, 21bit FP21, 21bit



Dot product targeting multiple vectors

• Reduction option in 
OpenACC are only for 
scalar variables

• Creating multiple scalar 
variables and corresponding 
loops leads to stride memory 
accesses

• Introduced CUDA
• Via wrapper, CUDA-based 

kernels can be called easily 
from OpenACC-based code
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1 #pragma acc parallel loop reduction(+:xy0, xy1, xy2, xy3)
2 for(i = 0; i < (*n_node); i++){
3 xy0 += (x[i][0][0]*y[i][0][0]+

x[i][1][0]*y[i][1][0]+
x[i][2][0]*y[i][2][0])*z[i];

4 …
5 xy3 += (x[i][0][3]*y[i][0][3]+

x[i][1][3]*y[i][1][3]+
6 x[i][2][3]*y[i][2][3])*z[i];
7 }

1 __global__
2 void dotproduct(int *n, float *x, float *y, float *z, float *xy){
3 /* CUDA computation */
4 }

1 void dotproduct_wrapper(int *n, float *x, float *y, float *z, float *xy){
2 dotproduct<<<960,128>>>(n, x, y, z, xy);
3 }

1 #pragma acc host_data use_device(n, x, y, z, xy){
2 dotproduct_wrapper(n, x, y, z, xy);
3 }



Reduction in overheads for launching 
kernels

• Overlap the overhead cost
• Add async options for kernels that can be launched at the same time

• Removal of local arrays in the kernel
• Sometimes local arrays are stored in local memory instead of registers

• Decrease the performance of computation bound kernels

• Change local arrays into scalar variables based on the information 
provided by the compiler

25

bcimplementation:
2746, Generating present(nodt(:),id,n1,ib,ibc(:),v0(:),vel1(:),vel3(:),vel2(:))

Generating Tesla code
2754, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
2767, !$acc loop seq

2746, Local memory used for velin



Performance measurement

• We solved an earthquake city simulation with 39 million DOF

• Used AI bridging Cloud Infrastructure (ABCI) 
• 1 compute node has 4×V100 GPU + 2×Intel Xeon Gold 6148 CPU

• Compare 5 versions of the solver

26

Programming model Precision 

1: CPU-based OpenMP FP32-64

2: Baseline OpenACC FP32-64

3: Baseline CUDA FP32-64

4: Proposed OpenACC FP21-32-64

5: SC’18 Gordon Bell 

Finalist solver

CUDA FP16-21-32-64



Performance of FP21 kernels - 1/3

CPU-based
Baseline 

OpenACC
proposed

Precision FP32 FP32 FP21

AXPY

Elapsed time 9.61 ms 0.605 ms 0.401 ms

Measured bandwidth 50.2 GB/s 797 GB/s 802 GB/s

Speedup ratio 1 15.8 24.0

27

• Measured the performance of each kernel using one compute node of ABCI

• Peak memory bandwidth of GPU: 900 GB/s, CPU: 63.9 GB/s

• Achieved reasonable speedup in the AXPY kernel

×1.5



Performance of FP21 kernels - 2/3

CPU-based
Baseline 

OpenACC
proposed

Precision FP32 FP32 FP21

Dot-product

Elapsed time 6.20 ms 0.456 ms 0.277 ms

Measured bandwidth 54.0 GB/s 735 GB/s 823 GB/s

Speedup ratio 1 13.6 22.4

28

• Measured the performance of each kernel using one compute node of ABCI

• Peak memory bandwidth of GPU: 900 GB/s, CPU: 63.9 GB/s

• Stride memory access in the baseline implementation 

has some effect on the performance

• Also achieved reasonable speedup in the dot product kernel

×1.64



Performance of FP21 kernels - 3/3

CPU-based
Baseline 

OpenACC
proposed

Precision FP32 FP32 FP32/21

Matrix-vector 

product

Elapsed time 54.61 ms 3.65 ms 3.69 ms

Speedup ratio 1 15.0 14.8

29

• Measured the performance of each kernel using one compute node of ABCI

• Peak memory bandwidth of GPU: 900 GB/s, CPU: 63.9 GB/s

• Matrix-vector product in not memory bound computation

• Data conversion of FP21/FP32 required additional computation cost

• Negligible compare to the entire computation cost

×0.989



Convergency of the solver

30

• The number of Iteration of CG loops with FP64 computation increased

• Negligible for the entire number of iterations 

• Demonstrated the effect of FP21 computations

• Small difference in the number of iterations when using FP21

• Failed to converge when using FP16 or bfloat16 instead of FP21

# of iterations
Precision in

Preconditioning
PreCGc PreCGcp PreCG CG (FP64)

CPU-based FP32 6199 28830 2674 91

baseline OpenACC FP32 6300 28272 2729 89

baseline CUDA FP32 6210 28491 2735 89

proposed FP32/21 4751 28861 2575 122

SC18GBF FP32/21/16 4308 26887 2797 129



Performance of the whole solver

781.8 

66.7 

61.0 

55.8 

47.7 

0 10 20 30 40 50 60 70 80 90 100

CPU-based

baseline OpenACC

baseline CUDA

proposed

SC'18GBF

Elapsed time (s)

PreCGc PreCGcp PreCG CG other
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• Achieved 14-fold speedup compared to the CPU-based codes on CPUs

• Reasonable speedup considering the ratio of peak memory bandwidth (1:14.1)

• 1.19-fold speedup over the baseline implementation with FP32-64 computations

• 84% of the performance in extremely tuned solver using CUDA

700 800

×14.0



Application Example

• Ground shaking analysis with complicated geometry
• 1,024 m × 1,024 m city area with underground and building structures 

surrounded by two-layered ground modeled

• 1.6×1010 degrees of freedom

• Computed using 384 compute nodes of Summit

32
b) Underground structure 

in the domain

c) Displacement 

distribution

a) Target domain 



Future tasks

• I rewrote our Fortran-based codes in C
• When using Fortran, inline of data conversion between FP21-FP32 

requires additional local memory
• Slightly decrease the performance
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1 #pragma acc parallel loop collapse(2)
2 for(i_ele = 0; i_ele < (*n_element); i_ele++){
3 for(i_vec = 0; i_vec < (*n_vector); i_vec++){
4 cny0 = connect[i_ele][0];
5 cny1 = connect[i_ele][1];
6 …
7 cny9 = connect[i_ele][9];
8 …
9 u0x = conv_fp21x3_to_fp32_x(u[cny0][i_vec]);
10 u0y = conv_fp21x3_to_fp32_y(u[cny0][i_vec]);
11 u0z = conv_fp21x3_to_fp32_z(u[cny0][i_vec]);
12 …

1 !$acc parallel loop collapse(2)
2 do i_ele = 1, n_element
3 do i_vec = 1, n_vector
4 cny1  = connect(1,i_ele);
5 cny2  = connect(2,i_ele);
6 …
7 cny10 = connect(10,i_ele);
8 …
9 u0x = conv_fp21x3_to_fp32_x(u(i_vec,cny1));
10 u0y = conv_fp21x3_to_fp32_y(u(i_vec,cny1));
11 u0z = conv_fp21x3_to_fp32_z(u(i_vec,cny1));
12 …

• I’m seeking a way to achieve reasonable performance also in Fortran



Summary and future implications

• Portable and maintainable codes with good performance are
important for the productivity in science and engineering  

• Target our implicit unstructured low-order finite element solver
• Sophisticated algorithms including AI and transprecision computing are used

• Latest version extremely tuned for Volta GPU to attain better performance

• Apply OpenACC to the solver
• FP21 data types can be implemented even in OpenACC

• In performance measurement on ABCI, 
a 14.0-fold speedup over the original CPU codes was achieved

• 86% of the performance of our extremely tuned solver using CUDA



Summary and future implications

• Source code to use FP21 is available to the public
→ https://github.com/y-mag-chi/fp21axpy
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