
GPU Implementation of a Sophisticated Implicit
Low-Order Finite Element Solver with

FP21-32-64 Computation using OpenACC

Takuma Yamaguchi1, Kohei Fujita1;2, Tsuyoshi Ichimura1, Akira Naruse3,
Maddegedara Lalith1, and Muneo Hori4

1. The University of Tokyo

2. RIKEN Center for Computational Science

3. NVIDIA Corporation

4. Japan Agency for Marine-Earth Science and Technology

1

WACCPD 2019 @ Denver

Nov. 18, 2019

Introduction

• Scientific simulation software needs to keep up with rapid
development of computer systems to benefit from improving
hardware capabilities

• Implementing hardware/system specific software is costly; thus,
developing maintainable code with portability and performance is
required for high productivity

• Especially important for real-world programs with sophisticated algorithms
and many lines of code

• OpenACC is an option for performance-portable code development
for both CPU- and GPU-based systems

• Porting sophisticated programs by OpenACC and sharing the process can be
useful for porting other applications

2

0 5 10 15

Reedbush-H

K computer

Target problem: Implicit low-order finite-element analysis

• De-facto standard for manufacturing and Earth sciences

• Consists of iterative solvers with preconditioners
• Involves random memory accesses and complex communication patterns

• In WACCPD 2016 & 2017 we demonstrated that CPU-based finite-
element solvers can be ported to GPU systems using OpenACC with
high performance (Best Paper Award in WACCPD 2016 & 2017)

3

K computer Reedbush-H

of nodes 20 10

CPU/node 1 x SPARC64

VIIIfx

2 x Intel Xeon

E5-2695 v4

GPU/node
-

2 x NVIDIA

P100

Hardware peak FLOPS

ratio
1 41.4

Memory bandwidth ratio 1 11.4

OpenACC ported code:

14.2 x speedup

Yamaguchi et al., Implicit Low-Order Unstructured Finite-Element Multiple Simulation Enhanced by Dense

Computation using OpenACC, WACCPD 2017

Target problem: Implicit low-order finite-element analysis

• In SC18, we developed a more sophisticated solver algorithm for Summit
• Incorporates artificial intelligence (AI) and FP16-FP21-FP32-FP64 transprecision

computing

• Thoroughly optimized for NVIDIA Tesla V100 GPUs with CUDA; extremely high
performance (selected as Gordon Bell Prize Finalist)

• However, lacks portability and maintainability

4

Target problem: Implicit low-order finite-element analysis

• In this paper, we port the SC18 solver algorithm to GPUs using
OpenACC

• Demonstrate that OpenACC porting achieves high speedup with small
developmental cost even for sophisticated application with non-standard data-
types (FP21)

5

Overview of SC18 solver

6

Scientific target: Urban earthquake modeling
• Unstructured mesh with implicit solvers required for urban earthquake

modeling
• We have been developing high-performance implicit unstructured finite-element solvers

(SC14 & SC15 Gordon Bell Prize Finalist, SC16 best poster)

• However, simulation incorporating coupling of ground & structure requires
finer resolution

• Traditional physics-based modeling too costly
• Can we combine use of data analytics to solve this problem?

7

SC14, SC15 & SC16 solvers:

ground simulation only Fully coupled ground-structure simulation with underground structures

Data analytics and equation based
modeling

• Equation based modeling
• Highly precise, but costly

• Data analytics
• Fast inferencing, but accuracy not as high

• Use both methods to complement each other

8

Phenomena

Data analytics Equation based modeling

Data analytics and equation based
modeling

• Equation based modeling
• Highly precise, but costly

• Data analytics
• Fast inferencing, but accuracy not as high

• Use both methods to complement each other

9

Phenomena

Data analytics Equation based modeling

(25-fold speedup

from without AI)

AI for accelerating

equation based

solver

In SC18 solver:

Difficulties of using data analytics to
accelerate equation based modeling
• Target: Solve A x = f

• Difficulty in using data analytics in solver
• Data analytics results are not always accurate
• We need to design solver algorithm that enables robust and cost

effective use of data analytics, together with uniformity for
scalability on large-scale systems

• Candidates: Guess A-1 for use in preconditioner
• For example, we can use data analytics to determine the fill-in of

matrix; however, challenging for unstructured mesh where sparseness
of matrix A is nonuniform (difficult for load balancing and robustness)

➡ Manipulation of A without additional information may be difficult…

10

Designing solver suitable for use with AI

• Use information of underlying governing equation
• Governing equation’s characteristics with discretization conditions

should include information about the difficulty of convergence in solver

• Extract parts with bad convergence using AI and extensively solve
extracted part

11

Phenomena

Data

analytics

Governing equation

A x = f

Equation based modeling

Discretization

Solver suitable for use with AI

• Transform solver such
that AI can be used
robustly

• Select part of domain to
be extensively solved in
adaptive conjugate
gradient solver

• Based on the governing
equation’s properties,
part of problem with bad
convergence is selected
using AI

12

Adaptive Conjugate Gradient iteration

(2nd order tetrahedral mesh)

PreCGc (1st order tetrahedral mesh)

Approximately solve Ac zc = rc

PreCGc
part (1st order tetrahedral mesh)

Approximately solve Acp zcp = rcp

PreCG (2nd order tetrahedral mesh)

Approximately solve A z = r
L

o
o

p
 u

n
ti
l
c
o

n
v
e

rg
e

d

Use zc as initial solution

Use zcp as initial solution

Use z for search direction

AI preconditioner – use to roughly solve A z = r

How to select part of problem using AI

• In discretized form, governing equation becomes function of
material property, element and node connectivity and
coordinates

• Train an Artificial Neural Network (ANN) to guess the degree of
difficulty of convergence from these data

1313Whole city model Extracted part by AI (about 1/10 of whole model)

Performance of AI-enhanced solver

• FLOP count decreased by 5.56-times from PCGE (standard
solver; Conjugate Gradient solver with block Jacobi
preconditioning)

14

Without AI With AI

CG iterations 132,665 88

PreCGc iterations - 5,803

PreCGc
part iterations - 26,826

PreCG iterations - 3,103

FLOPS count 184.7 PFLOP 33.2 PFLOP

Performance of AI-enhanced solver on K computer/Summit

• PCGE: standard solver; Conjugate Gradient solver with block Jacobi preconditioning

• SC14: Gordon Bell Prize finalist solver (with multi-grid & mixed-precision arithmetic)

15

0 10000 20000 30000 40000

49152

24576

12288

9216

4608

2304

1152

576

Elapsed time (s)

#
 o

f
M

P
I

p
ro

c
e
s
s
e
s
 (

#

n
o
d
e
s
)

(17.2% of FP64 peak)

■AI-enhanced solver ■ SC14 solver ■ Standard solver (PCGE)

Weak scaling on K computer Weak scaling on Summit

0 500 1000 1500 2000 2500

24576

12288

6144

4608

2304

1152

576

288

Elapsed time (s)

#
 o

f
M

P
I

p
ro

c
e
s
s
e
s
 (

#

G
P

U
s
)

(14.7% of FP64 peak)

GPU implementation of SC18 solver

• CUDA is used for Summit

• Optimized codes for better performance
• Specific descriptions for FP16 computations on

NVIDIA Tesla V100 GPUs were applied

• Lacks portability and maintainability

16

const half2 dc_vec1 = half2(dc[1], dc[1]);
const half2 dc_vec2 = half2(dc[2], dc[2]);
const half2 dc_vec3 = half2(dc[3], dc[3]);
const half2 dc_vec4 = half2(dc[4], dc[4]);

tmp1_vec = __hadd2(Bu_vec0,Bu_vec1);
tmp1_vec = __hadd2(tmp1_vec,Bu_vec2);
tmp2_vec = __hmul2(dc_vec1,tmp1_vec);

DBu_vec0 = __hmul2(dc_vec0,Bu_vec0);
DBu_vec0 = __hadd2(DBu_vec0,tmp2_vec);
DBu_vec1 = __hmul2(dc_vec0,Bu_vec1);
DBu_vec1 = __hadd2(DBu_vec1,tmp2_vec);
DBu_vec2 = __hmul2(dc_vec0,Bu_vec2);
DBu_vec2 = __hadd2(DBu_vec2,tmp2_vec);
DBu_vec3 = __hmul2(dc_vec2,Bu_vec3);
DBu_vec4 = __hmul2(dc_vec3,Bu_vec4);
DBu_vec5 = __hmul2(dc_vec4,Bu_vec5);

…
…

Example code

using CUDA

Summary of first half of talk

• We try to port our SC18 Gordon Bell Prize finalist solver by
OpenACC in this paper

• The SC18 solver uses artificial intelligence to improve
performance from previous solvers

• High performance attained on Summit; however, maintainability
and portability of the code is low

• From now, we will talk about OpenACC porting of SC18 solver
to improve maintainability and portability keeping the high
performance

17

OpenACC-based
implementation of solver

18

Porting strategy using OpenACC

Demonstrate that the performance is acceptable compared to
that in CUDA implementations by following procedures

1. Baseline implementations
• Define where to apply OpenACC

• Minimize data transfer between CPU and GPUs

• Insert directives to parallelize loops

2. Introduction of our custom data type FP21

3. Miscellaneous optimizations for better performance

19

Baseline implementation of OpenACC
Define where to apply OpenACC

20

Read data

Output vector x

Solve Ax=b

#pragma acc data copy(…) {

}

Training/Inference of the AI

#pragma acc update host(err)

Check convergence

CPU computation

GPU computation

Data transfer between CPU and GPUs

is minimized in the solver

• Only in convergence check part

• GPUDirect is used for

MPI point-to-point communication

Computation

Baseline implementation of OpenACC
Insertion of some directives for
parallel computation

Example for
sparse-matrix vector multiplication

• Collapse element-wise loop and
timestep-wise loop to extract
parallelism

21

1 #pragma acc parallel loop collapse(2)

2 for(i_ele = 0; i_ele < (*n_element); i_ele++){

3 for(i_vec = 0; i_vec < (*n_vector); i_vec++){

4 cny0 = connect[i_ele][0];

5 cny1 = connect[i_ele][1];

6 …

7 cny9 = connect[i_ele][9];

8

9 u0x = u[cny0][0][i_vec];

10 u0y = u[cny0][1][i_vec];

11 u0z = u[cny0][2][i_vec];

12 …

13 u9z = u[cny9][2][i_vec];

14

15 Au0x = …

16 …

17 Au9z = …

18

19 #pragma acc atomic

20 r[cny0][0][cny0] += Au0x;

21 …

22 #pragma acc atomic

23 r[cny9][2][cny9] += Au9z;

24 }

25 }

Introduction of custom data type: FP21
• Most computation in CG loop is memory bound computation

• However, it’s impossible to use FP16 or bfloat16 for whole vector
• Small dynamic range easily leads to overflow/underflow

• Less accuracy hamper the convergence of the solver

• Define custom data type FP21 numbers

S e x p o n e n t f r a c t i o n

S e x p o n e n t f r a c t i o n

Single precision

(FP32, 32 bits)

(FP21, 21 bits)

1bit sign + 8bits exponent + 23bits fraction

1bit sign + 8bits exponent + 12bits fraction

S e x p f r a c t i o n
Half precision

(FP16, 16 bits)
1bit sign + 5bits exponent + 10bits fraction

S e x p o n e n t f r a c
(bfloat16, 16 bits)

1bit sign + 8bits exponent + 7bits fraction

Implementation of FP21 computation

• Not supported in hardware, used only for storing
• FP21(stored)⇐bit operation⇒FP32(computed)

• FP21×3 are stored into 64bit array
• We are solving 3D finite element solver, so x, y, and z components can be

stored as one components of 64 bits array

• 1/3 of memory consumption compared to FP64 variables

• This data type is used only in the preconditioning part

64bit

FP21, 21bit FP21, 21bit FP21, 21bit

Dot product targeting multiple vectors

• Reduction option in
OpenACC are only for
scalar variables

• Creating multiple scalar
variables and corresponding
loops leads to stride memory
accesses

• Introduced CUDA
• Via wrapper, CUDA-based

kernels can be called easily
from OpenACC-based code

24

1 #pragma acc parallel loop reduction(+:xy0, xy1, xy2, xy3)
2 for(i = 0; i < (*n_node); i++){
3 xy0 += (x[i][0][0]*y[i][0][0]+

x[i][1][0]*y[i][1][0]+
x[i][2][0]*y[i][2][0])*z[i];

4 …
5 xy3 += (x[i][0][3]*y[i][0][3]+

x[i][1][3]*y[i][1][3]+
6 x[i][2][3]*y[i][2][3])*z[i];
7 }

1 __global__
2 void dotproduct(int *n, float *x, float *y, float *z, float *xy){
3 /* CUDA computation */
4 }

1 void dotproduct_wrapper(int *n, float *x, float *y, float *z, float *xy){
2 dotproduct<<<960,128>>>(n, x, y, z, xy);
3 }

1 #pragma acc host_data use_device(n, x, y, z, xy){
2 dotproduct_wrapper(n, x, y, z, xy);
3 }

Reduction in overheads for launching
kernels

• Overlap the overhead cost
• Add async options for kernels that can be launched at the same time

• Removal of local arrays in the kernel
• Sometimes local arrays are stored in local memory instead of registers

• Decrease the performance of computation bound kernels

• Change local arrays into scalar variables based on the information
provided by the compiler

25

bcimplementation:
2746, Generating present(nodt(:),id,n1,ib,ibc(:),v0(:),vel1(:),vel3(:),vel2(:))

Generating Tesla code
2754, !$acc loop gang, vector(128) ! blockidx%x threadidx%x
2767, !$acc loop seq

2746, Local memory used for velin

Performance measurement

• We solved an earthquake city simulation with 39 million DOF

• Used AI bridging Cloud Infrastructure (ABCI)
• 1 compute node has 4×V100 GPU + 2×Intel Xeon Gold 6148 CPU

• Compare 5 versions of the solver

26

Programming model Precision

1: CPU-based OpenMP FP32-64

2: Baseline OpenACC FP32-64

3: Baseline CUDA FP32-64

4: Proposed OpenACC FP21-32-64

5: SC’18 Gordon Bell

Finalist solver

CUDA FP16-21-32-64

Performance of FP21 kernels - 1/3

CPU-based
Baseline

OpenACC
proposed

Precision FP32 FP32 FP21

AXPY

Elapsed time 9.61 ms 0.605 ms 0.401 ms

Measured bandwidth 50.2 GB/s 797 GB/s 802 GB/s

Speedup ratio 1 15.8 24.0

27

• Measured the performance of each kernel using one compute node of ABCI

• Peak memory bandwidth of GPU: 900 GB/s, CPU: 63.9 GB/s

• Achieved reasonable speedup in the AXPY kernel

×1.5

Performance of FP21 kernels - 2/3

CPU-based
Baseline

OpenACC
proposed

Precision FP32 FP32 FP21

Dot-product

Elapsed time 6.20 ms 0.456 ms 0.277 ms

Measured bandwidth 54.0 GB/s 735 GB/s 823 GB/s

Speedup ratio 1 13.6 22.4

28

• Measured the performance of each kernel using one compute node of ABCI

• Peak memory bandwidth of GPU: 900 GB/s, CPU: 63.9 GB/s

• Stride memory access in the baseline implementation

has some effect on the performance

• Also achieved reasonable speedup in the dot product kernel

×1.64

Performance of FP21 kernels - 3/3

CPU-based
Baseline

OpenACC
proposed

Precision FP32 FP32 FP32/21

Matrix-vector

product

Elapsed time 54.61 ms 3.65 ms 3.69 ms

Speedup ratio 1 15.0 14.8

29

• Measured the performance of each kernel using one compute node of ABCI

• Peak memory bandwidth of GPU: 900 GB/s, CPU: 63.9 GB/s

• Matrix-vector product in not memory bound computation

• Data conversion of FP21/FP32 required additional computation cost

• Negligible compare to the entire computation cost

×0.989

Convergency of the solver

30

• The number of Iteration of CG loops with FP64 computation increased

• Negligible for the entire number of iterations

• Demonstrated the effect of FP21 computations

• Small difference in the number of iterations when using FP21

• Failed to converge when using FP16 or bfloat16 instead of FP21

of iterations
Precision in

Preconditioning
PreCGc PreCGcp PreCG CG (FP64)

CPU-based FP32 6199 28830 2674 91

baseline OpenACC FP32 6300 28272 2729 89

baseline CUDA FP32 6210 28491 2735 89

proposed FP32/21 4751 28861 2575 122

SC18GBF FP32/21/16 4308 26887 2797 129

Performance of the whole solver

781.8

66.7

61.0

55.8

47.7

0 10 20 30 40 50 60 70 80 90 100

CPU-based

baseline OpenACC

baseline CUDA

proposed

SC'18GBF

Elapsed time (s)

PreCGc PreCGcp PreCG CG other

31

• Achieved 14-fold speedup compared to the CPU-based codes on CPUs

• Reasonable speedup considering the ratio of peak memory bandwidth (1:14.1)

• 1.19-fold speedup over the baseline implementation with FP32-64 computations

• 84% of the performance in extremely tuned solver using CUDA

700 800

×14.0

Application Example

• Ground shaking analysis with complicated geometry
• 1,024 m × 1,024 m city area with underground and building structures

surrounded by two-layered ground modeled

• 1.6×1010 degrees of freedom

• Computed using 384 compute nodes of Summit

32
b) Underground structure

in the domain

c) Displacement

distribution

a) Target domain

Future tasks

• I rewrote our Fortran-based codes in C
• When using Fortran, inline of data conversion between FP21-FP32

requires additional local memory
• Slightly decrease the performance

33

1 #pragma acc parallel loop collapse(2)
2 for(i_ele = 0; i_ele < (*n_element); i_ele++){
3 for(i_vec = 0; i_vec < (*n_vector); i_vec++){
4 cny0 = connect[i_ele][0];
5 cny1 = connect[i_ele][1];
6 …
7 cny9 = connect[i_ele][9];
8 …
9 u0x = conv_fp21x3_to_fp32_x(u[cny0][i_vec]);
10 u0y = conv_fp21x3_to_fp32_y(u[cny0][i_vec]);
11 u0z = conv_fp21x3_to_fp32_z(u[cny0][i_vec]);
12 …

1 !$acc parallel loop collapse(2)
2 do i_ele = 1, n_element
3 do i_vec = 1, n_vector
4 cny1 = connect(1,i_ele);
5 cny2 = connect(2,i_ele);
6 …
7 cny10 = connect(10,i_ele);
8 …
9 u0x = conv_fp21x3_to_fp32_x(u(i_vec,cny1));
10 u0y = conv_fp21x3_to_fp32_y(u(i_vec,cny1));
11 u0z = conv_fp21x3_to_fp32_z(u(i_vec,cny1));
12 …

• I’m seeking a way to achieve reasonable performance also in Fortran

Summary and future implications

• Portable and maintainable codes with good performance are
important for the productivity in science and engineering

• Target our implicit unstructured low-order finite element solver
• Sophisticated algorithms including AI and transprecision computing are used

• Latest version extremely tuned for Volta GPU to attain better performance

• Apply OpenACC to the solver
• FP21 data types can be implemented even in OpenACC

• In performance measurement on ABCI,
a 14.0-fold speedup over the original CPU codes was achieved

• 86% of the performance of our extremely tuned solver using CUDA

Summary and future implications

• Source code to use FP21 is available to the public
→ https://github.com/y-mag-chi/fp21axpy

Acknowledgments
• Our results were obtained using Computational resource of AI Bridging Cloud Infrastructure (ABCI),

National Institute of Advanced Industrial Science and Technology (AIST).

• We acknowledge support from Post K computer project (Priority Issue 3 - Development of

integrated simulation systems for hazards and disasters induced by earthquakes and tsunamis),

and Japan Society for the Promotion of Science (17K14719, 18H05239, 18K18873).

• Part of our results were obtained using the Summit at Oak Ridge Leadership Computing Facility, a

US Department of Energy, Office of Science User Facility at Oak Ridge National Laboratory.

