Evaluation of Directive-based GPU Programming Models on a Block Eigensolver with Consideration of Large Sparse Matrices

Fazlay Rabbi¹, Christopher S. Daley², Hasan Metin Aktulga¹ and Nicholas J. Wright²

¹Michigan State University, East Lansing MI, USA

²Lawrence Berkeley National Laboratory, Berkeley CA, USA

{rabbimd, hma}@msu.edu, {csdaley, njwright}@lbl.gov

WACCPD @ SC 2019 Denver, CO

Introduction

- Achieving high performance and performance portability on heterogeneous systems is challenging.
- Test Application: Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG)
 - Popular and commonly used, preconditioning can be done!
 - Pretty complex and challenging one!
- Baseline version: OpenMP/OpenACC version for CPUs using LAPACK and BLAS routines.
- Can we port it to GPU using directive based programming model and achieve desired performance?

Motivation

- All DOE's future planned systems will be equipped with GPUs:
 - NERSC Perlmutter (AMD CPU + NVIDIA GPU)
 - ALCF Aurora (Intel CPU + Intel XE Accelerator)
 - OLCF Frontier (AMD CPU+ AMD GPU)
- Portability
 - OpenMP and OpenACC provide pragmas to offload computations to device (i.e. GPUs)
- Efficient use of accelerators is desirable to exploit the full capabilities of these future DOE ASCR systems .

Algorithm 1: Locally Optimal Block Preconditioned Conjugate Gradient LOBPCG eigensolver. **Input:** A (sparse matrix), X (dense matrix), neig (# of eigen values), num simulations Output: lambda (eigen value) Pseudocode ¹ for i = 1 to num simulations do R = X * lambdaSPMM operation – ~56% Total Exe. Time Calculate residualNorm and activeCols 3 if residualNorm > Tolerence then 4 break5 XTY operation - ~31% Total Exe. Time end 6 temp = $X^T * R(: activeCols)$ 7 tempR = X * temp8 R(: activeCols) = tempR - R(: activeCols)XY operation - ~6% Total Exe. Time 9 gramRBR = R^T (: activeCols) * R(: activeCols) 10 R(: activeCols) = R(: activeCols) * cholesky(gramRBR)11 actAR = SpMM(A, actR)Application Kernels - ~8% Total Exe. Time $\mathbf{12}$ gramPBP = P^T (: activeCols) * P(: activeCols) 13 gramPBP = inverse(cholesky(gramPBP))14 P(: activeCols) = P(: activeCols) * gramPBP15 AP(: activeCols) = AP(: activeCols) * gramPBP16 gramXAR = $X^T * R(: activeCols)$ 17 $\operatorname{gramRAR} = \operatorname{actAR}^T * \operatorname{R}(: \operatorname{activeCols})$ 18 $\operatorname{gram} XAP = AX^T * P(: \operatorname{activeCols})$ 19 $\operatorname{gramRAP} = \operatorname{actAR}^T * P(: \operatorname{activeCols})$ $\mathbf{20}$ gramPAP = $AP^{T}(: activeCols) * P(: activeCols)$ $\mathbf{21}$ $\operatorname{gramXBP} = \mathbf{X}^T * \mathbf{P}(:\operatorname{activeCols})$ 22 gramRBP = \mathbf{R}^{T} (: activeCols) * P(: activeCols) $\mathbf{23}$ [GA, GB] = constructMat() $\mathbf{24}$ [lambda, coordX] = EIGEN(GA, GB) $\mathbf{25}$ P(: activeCols) = R(: activeCols) * coordX $\mathbf{26}$ P = P(: activeCols) * coordX27 AP(: activeCols) = actAR * coordX28 AP = AP(: activeCols) * coordX $\mathbf{29}$ newX = X * coordX30 X = newX + P31 newAX = AX * coordX32 AX = newAX + AP33

LOBPCG Porting Strategy: Initial Attempt

- Use optimized CUDA library routines for the most expensive kernels.
 - cblas_dgemm \rightarrow cublasDgemm
 - SpMM \rightarrow cusparseDcsrmm
- Then started porting other application kernels using directives.
- Creating target data region to copy necessary data to/from GPU
 - #pragma omp target data map(to: list) map(from: list) map(tofrom: list)
 - #pragma acc data copy(..) copyin(..) copyout(..)
- Running slower!!!
 - 1GPU+1CPU was 0.92x slower compared to 1CPU.

LOBPCG Porting Strategy: Device Pointer

- *nvprof* showing huge data movement between CPU and GPU.
 - $\sim 97\%$ of total execution time are spent on data movement
- Need to minimize data movement between CPU & GPU.
- Two useful clauses that allow OpenMP/OpenACC kernels to access data that is already allocated on GPU:
 - $is_device_ptr(list) \rightarrow OpenMP$
 - $deviceptr(list) \rightarrow OpenACC$

LOBPCG Porting Strategy: Impact of Device Pointer

Before using is_device_ptr

After using is_device_ptr

7

LOBPCG Porting Strategy: Non Portable Routines

- We couldn't run completely on GPU because there are host only LAPACK routines:
 - LAPACKE_dpotrf()
 - LAPACKE_dsygv()
 - LAPACKE_dgetrf()
 - LAPACKE_dgetri()
- 10 small matrices are moved between CPU & GPU in every iteration.

Test matrices

- Square Matrix
- Different domains and different sparsity patterns

Matrix	Dimensions	% of Non zeros	Size (GB)	Domain
Queen_4147	4.1M	0.0010	2.02	3D Structural Problem
HV15R	2.0M	0.0070	3.41	Computational Fluid Dynamics
Nm7	5.0M	0.0026	7.79	Nuclear Physics
Nm8	7.6M	0.0010	7.14	Nuclear Physics

Evaluation Platform

- Cori-GPU and Summit
 - Equipped with NVIDIA Volta V100 GPU

	Cori-GPU	Summit
Processor	Intel Skylake	IBM Power9
CPUs : GPUs	2:8	2:6
CPU-GPU Interconnect	PCIe 3.0, Peak BW 16 GB/s	NVLink2, Peak BW 50 GB/s

- CPU vs GPU Test Configuration:
 - CPU : One Socket, One thread per core.
 - GPU: One Socket (One thread per core) + One GPU.

Evaluation – LOBPCG

LOBPCG performance on Cori-GPU and Summit for Nm7 Matrix

- Variable CPU performance:
 - Custom CSR based SpMM kernel runs 1.5-3X slower in OpenACC CPU version compared to OpenMP CPU version

Evaluation – CPU vs GPU performance

LOBPCG OpenMP CPU vs OpenMP GPU execution time breakdown on Cori-GPU for Nm7 matrix

Evaluation – Putting All Matrices Together

LOBPCG GPU vs CPU speedup on Cori-GPU

What is next?

- What if the sparse or any other matrix doesn't fit in GPU memory (say sparse matrix > 16GB)?
 - This is a common issue for large-scale scientific computing/data science applications.
- Is it useful to use GPU for large matrices?
- Possible solutions:
 - Matrix tiling
 - Unified memory Original code with no tiling.

Tiling Matrices

- Utilizing GPU memory properly
- Tiling matrices for each operation
 - Overlapping data movement with computation
- We tested with two dominant kernels in LOBPCG:
 - *cusparseDcsrmm* (SpMM operartion)
 - *cublasDgemm* (Inner product operation)

Tiling SPMM (cusparseDcsrmm) Kernel

Tiling Inner Product (cublasDgemm) Kernel

Evaluation - Inner Product (*cublasDgemm*) Kernel

Lower is better

- Total Memory footprint: 51.54 GB
- Main Difference: Interconnects between CPU and GPU. We measured the following BW in this test application:
 - Cori-GPU HtoD bandwidth 4 GB/s
 - Summit HtoD bandwidth 13 GB/s
- Data movement time > Compute time
- We will always perform worse compared to matrices completely resident in GPU memory for this kernel

Evaluation – SPMM Tiling

- Total Memory footprint: 35.1 GB
- Compute time > Data movement time
- Data movement time could be hidden behind compute time by choosing a clever prefetching scheme such as – using *cudaMemPrefetchAsync()*.
- If we could do this prefetching then we would nearly obtain the same throughput compared to matrices resident on GPU.

Evaluation – SPMM (Small Matrix)

- **Total Memory footprint**: 11.7 GB
- Unified memory doesn't hurt the performance.
- This is a productivity win for application programmer: one pointer instead of separate host and device pointer.

- Total Memory footprint: 35.1 GB
- Unified memory gives bad and unpredictable performance.

XY (cublasDgemm) Unified Memory – nvprof Output

Summit GPU page faults takes ~30X longer!!

	Cori-GPU	Summit	
GPU page fault group	10.668 sec	313.436 Sec	
H2D data transfer	32 GB	32 GB	
D2H data transfer	16.64 GB	16.64 GB	

• Currently we are in discussion with NVIDIA for understanding the performance on Summit.

Conclusion and Future Work

- We have successfully mixed OpenMP & OpenACC target offloading constructs and CUBLAS library functions.
 - 2.8X 4.3X speedup over an optimized CPU implementation.
- We have demonstrated that GPUs can accelerate large matrix problems.
 - Tiling is more effective than Unified Memory!
- Future works:
 - Tiling full solver.
 - Finding optimal data movement scheme.

