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Fusion will provide clean, unlimited enerqgy source
I TER is crucial next step in the guest of fusion ener

Weight 23,000 tonnes
Height ~30 metres
Diameter ~30 metres
Plasmavolume 840 m*
Temperature at plasma core  150,000,000°C
Fusion power 500 MW
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Predictive simulation Is needed for ITER burning plasmas

Simulation of plasma confinement and stability are required before each ITER experiment

Since ignition in ITER relies on self-heating by energetic fusion products (a-particles),
confinement of energetic particles (EP) is a critical issue for ITER

Plasma confinement properties in the new ignition regime of self-heating by o-particles is
one of the most uncertain issues when extrapolating from existing fusion devices to ITER

» EP transport by meso-scale EP instabilities

» Interaction between EP with microturbulence responsible for thermal plasma transport and macroscopic
magnetohydrodynamic (MHD) instabilities potentially leading to disruptions

ScIDAC ISEP: integrated simulations of EP turbulence by treating relevant physical
processes from micro to macro scales on same footing

» ISEP Center: UCI, GA, PPPL, ORNL, LBNL, LLNL, PU, UCSD, UT



Predictive capability requires integrated simulation for nonlinear
Interactions of multiple Kinetic-MHD processes

: Collisional
Microturbulence |« > | transport
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NTM | e————) | DiSruption
NL dynamics?

® Neoclassical tearing mode (NTM) is the most likely instability leading to disruption

® NTM excitation depends on nonlinear interaction of MHD instability, microturbulence,
collisional transport, and EP effects. NTM control requires radio frequency (RF) waves



Gyrokinetic Toroidal Code (GTC)

® First-principles, global, integrated simulation capability for
nonlinear interactions of multiple kinetic-MHD processes

® Current physics capability
v Global 3D toroidal geometry for tokamak, stellarator, FRC
v Microturbulence: 5D gyrokinetic ions & electrons, electromagnetic

compressible fluctuations, collisionless/collisional tearing modes 5« or

v" MHD and energetic particle (EP): Alfven eigenmodes, kink,
resistive tearing modes

v" Neoclassical transport: Fokker-Planck collision operators
v Radio frequency (RF) waves: 6D Vlasov ions

® Adapted as ISEP framework by SciDAC ISEP

® Key code in ITER-China fusion simulation project ~1.5

® Large user community (>40 users/developers); Broad impacts
to fusion (12 papers in PRL, Science, Nature Comm.)
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Open source:
Phoenix.ps.uci.edu/GTC



http://phoenix.ps.uci.edu/GTC
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GTC Multi-level Parallelization on CPU

Multi-physics model: particle-in-cell (PIC) and

fluid models solved together
Particle-tight MPI mapping:

PIC Simulation: particles in 5D/6D phase good for gather-scatter operations

space; E_Iectromagnetlc fields and fluids on 3D yr——— yT——
fixed grids
Process 3

Multi-level parallelization

1. MPI domain-decomposition (1D) for particle-
field interactions

2. MPI particle-decomposition with series/parallel
fields/fluids solvers (typically 100-1000 particles
per grid)

3. Loop level parallelism using OpenMP

Porting to GPU with same MPI parallelization;
replace OpenMP with OpenACC




Porting GTC to Titan GPU using OpenACC

Use one MPI per GPU, move most computing-intensive particle and field data to GPU

Restructured for unified subroutines for particles
— push(species_name, and other parameters): gather fields on particles from grids
— charge(species_name): scatter particle charge and current to grids
— shift(species_name): send particles to their MPI domain
Charge subroutine: scatter operations on GPU use $acc atomic update
— CPU version use work-vector method: each register has a private copy of local grids
Shift subroutine rarely changed: use optimized CUDA version

— CPU version used a sequential implementation. So cannot apply OpenACC directly.
— Algorithm redesign using CUDA

particle array scatter operation

grid array



Particle optimization: binning, texture cache

® Particle binning: rearrange particle arrays every several time steps (not much overhead Iin
sorting), so physically close particles stay close in memory => depends on same/similar
section of field array significantly enhance data locality in particle pushes => maximize
GPU “cache” reuse

® Enable texture cache on Titan Kepler GPU for grid arrays in gather operation leads to
3X speedup; Summitdev Pascal GPU & Summit Volta GPU unify texture/L1 cache

® Both Array of Structure (AoS) and Structure of Array (SoA) data layouts for particles have
been implemented on GTC-P. Performance analysis using NVPROF on Titan shows no
significant speedup is obtained with SoA. We thus decide to continue using AoS layout for
all particle species



Push subroutine: careful mapping for local memory

Most time consuming loop in gather operations in push subroutine is related to 2D/3D spline function

eqgdata.F90:
spdim=27 or 9

push.F90:
real dx(27)
!Sacc parallel loop private(dx)
do m=1,me
doii =1, spdim
dx(ii)=zpart(1,m)...

enddo
enddo
ISacc end parallel

Compiler doesn’t know the index of dx.
Private storage in global memory for each thread.
Leads to uncoealesced access

module.F90:
spdim=27 or 9

push.F90:
real dx(spdim)
!Sacc parallel loop private(dx)
do m=1,me
doii =1, spdim
dx(ii)=zpart(1,m)...

enddo
enddo
ISacc end parallel

Compiler knows the index.
Can put into register or local memory.
4X speedup in this loop

1 <ANVIDIA.
1



Particles Pushed / sec

GTC Weak Scaling on Titan
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EP physics simulation [Z. X. Wang et al, PRL2013] of most advanced US fusion
device DIII-D using 3 species: electron, thermal & fast ions

Both grid and particle numbers per core remain constant

GPU (NVIDIA K20x) achieves 3x speedup from CPU (16 cores AMD 6274)



Timing Breakdown for Weak Scaling Test
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® Electron is most compute intensive

® Decrease of performance in large processor counts is mainly due to increased portion

of non-GPU accelerated subroutines as well as MPI1 time




Timing Breakdown for Hybrid Weak Scaling on Titan
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Fusion device size increases from existing DIII-D to future larger ITER
Grid number 1s proportional to square root of node number

Number of particles per MPI is fixed

Fields solver became a bottleneck after all particles ported to GPU
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Sparse Matrix Solver ported to Summitdev GPU
® Hypre algebraic multi-grid solver 11X faster than PETSc standard solver on Summitdev
® Field solver ported to GPU: NVIDIA AmgX solver 27X faster than PETSc
® Restrict GPU number used in AmgX: more GPU <==> more communications
® Fluid subroutines: advance field quantities => Ilghtwelght done on CPU
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Optimize MPI mapping for shift on Summit

®* Two MPI communicators in GTC:

v’ Toroidal communicator: MPI ranks with the same particle domain ID, but different toroidal domain IDs
v’ Particle communicator: MPI ranks with the same toroidal ID, but different particle domain ID

® Particle-tight mapping: not good for MPI_SendRecv in shift subroutine
® Change to toroidal-tight mapping: shift_e time is reduced by 2X
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GTC Performance on Summit GPU

® Speeds up 37X from CPU to GPU on 384 GPUs; 20X on 5556 GPUs (1/5 of SUMMIT)
® Recently selected by NVIDIA as Top 15 App Worldwide

® Summit early science application
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In GTC hybrid weak scaling test on Summit




Conclusions and Plan
GTC fully optimized and scaled up to whole Summit

OpenACC directives: good performance on GPU and ease of maintenance by application users
Memory management key to GPU performance

Other completed work: FFT in fluid ported to GPU, ADIOS implemented in GTC

GTC on Tianhe-3 prototype (Phytium ARM ) using OpenMP 4.0 in GCC compiler

ScIDAC ISEP partnership (R. Falgout, S. Klasky, S. Williams, W. Tang): ISEP framework
portablllty and Optlmlzatlon . % Particles Pushed/sec % Ideal Scaling

particles pushed / sec (10%9)

GTC weak scaling on Summit, W. Joubert
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