BRICE Segmia

Exploration of Supervised Machine Learning
Techniques for Runtime Selection of CPU vs.GPU
Execution in Java Programs

Gloria Kim (Rice University)
Akihiro Hayashi (Rice University)
Vivek Sarkar (Georgia Tech)

#

Java For HP(C?

4K x 4K Matrix Multiply GFLOPS Absolute speedup
Python 0.005 1
Java 0.058 11 / Any ways to)
C 0.253 47 accelerate
Parallel loops 1.969 366 Java

Parallel divide and conquer 36.168 6,724 programs?
+ vectorization 124.945 23,230
+ AVX intrinsics 335.217 62,323
Strassen 361.681 67,243

Dual Socket Intel Xeon E5-2666 v3, 18cores, 2.9GHz, 60-GiB DRAM

N = N
RI‘ E Ge?rlégclﬁ Crediits : Charles Leiserson, Ken Kennedy Award Lecture @ Rice University, Karthik Murthy @ PACT2015 2 é

Java 8 Parallel Streams APls

JExplicit Parallelism with lambda expressions

IntStream.range(@, N)

.parallel()
.forkach(1 ->
<lambda>);

| G —
SRICE Segrgia K

Explicit Parallelism with Java

J High-level parallel programming with Java
offers opportunities for
= preserving portability
v Low-level parallel/accelerator programming is not required

= enabling compiler to perform parallel-aware
optimizations and code generation

Java 8 Programs J QW

Java 8 Parallel Stream API

Multi- Many-
JAR core core B rFGAS BEELELY HW
NRICE G-t et

Challenges for
GPU Code Generation

Standard Java API Call for Parallelism
IntStream.range(@, N).parallel().forEach(1 -> <lambda>);

E E .
Challenge 1 Challenge 2 Challenge 3
Supporting Java Accelerating Java CPU / GPU
Features on GPUs programs on GPUs Selection

v' Exception Semantics v* Kernel Optimizations v Selection of a faster device
v' Virtual Method Calls v DT Optimizations from CPUs and GPUs “
5

AN RI‘ E Ge%rglﬁ Credits : Checklist by Phil Laver from the Noun Project, Rocket by Luis Prado from the Noun Project
L) ecC

Rocket by Maxwell Painter Karpylev from the Noun Project, Running by Dillon Arloff from the Noun Project

Related Work: Java + GPU

Lang JIT GPU Kernel Device Selection
JCUDA Java - CUDA GPU only
Lime Lime v Override map/reduce Static
Firepile Scala v reduce Static
JaBEE Java v Override run GPU only
Aparapi Java v map Static
Hadoop-CL Java v Override map/reduce Static
RootBeer Java v Override run Not Described
HJ-OpenCL HJ - forall / lambda Static
PPPJO09 (auto) Java v For-loop Dynamic with Regression
Our Work Java 4 Parallel Stream Dynamic with Machine Learning

(T ‘ = None of these approaches considers Java 8 Parallel Stream APIs Y
RICE Gegrréggﬁ and a dynamic device selection with machine-learning &3’

JIT Compilation for GPU

JIBM Java 8 Compiler

= Built on top of the production version of the
IBM Java 8 runtime environment (J9 VM)

1st invocation metEod A | Interpretation on I\c/zlglrtel
2nd invcl)cation method A JVM CPUs
. B :
Nth invocation meth-od A | Native Code I\élglrtel Mc?)rrz_
(N+1)th invocation method A Generation for CPUs

- . GPUs
ZRICE Gegraia ™ g - '

The JIT Compilation Flow

Java
Bytecode

Our IR Optimizations |dentification Code Generation Binary
=
Our JIT Compiler for GPUs

NVVM IR -7/ lioNVVM

BAR G i
SRICE Gegrgia K

Speedup relative to SEQENTIAL

Java (log scale)

Performance Evaluations

B 160 worker threads (Fork/join) BGPU < Higher is better

10000.0
844.7 T772.3 1164.8
1000.0

100.0 4Y-C
10.0 -

CPU: IBM POWERS8 @ 3.69GHz , GPU: NVIDIA Tesla K4

8 £ ® - 0 m
VAN G
NRICE Gegraia o

Runtime CPU/GPU Selection

- : method A) i .
Nth invocation e i Native Code hélglrtel I\/Icir;é/
i i method A G tion fo
(N+1)th invocation eneration for CPUs GPUs
. - /¥

(Open Question)
Which one is faster?

BAR G =
YRICE Segrgia K

Our approach:
ML-based Performance Heuristics

JIT compiler
] bytecode ([Crimo |]
data 1 ED:' App A > extraction 9[feature 1 \
- = ‘:::> < < N/
E?a? ED:' bytecode _:I> feature >[e 2 0 J
. App A_J {7 _ | extraction | ")L/ ML /—s | Prediction St
| I R I Model Runtime
data 3 | oF bﬁggog © '59 T ’[feature 3 _ J
Training run with JIT Compiler Offline Model Construction

J A binary prediction model is constructed by supervised
machine learning techniques

Y RICE Gegraia |)

Features of program

JLoop Range (Parallel Loop Size)

1 The dynamic number of Instructions in IR

= Memory Access

= Arithmetic Operations

= Math Methods

= Branch Instructions

= Other Types of Instructions

2 G H
o RICE “°98Z8

Features of program (Cont’d)

JThe dynamic number of Array Accesses

= Coalesced Access (afi]) &
= Offset Access (afi+c]) § - |
. . £ 9 | . Off§et:array[i+9]
= Stride Access (a[c™l]) £ © Stride : array[c*i]
= Other Access (ab[l) & * | e

O 5 10 15 20 25 30

] RICE Georgia c : offset or stride size
3 Tech | 13

An example of feature vector

IntStream.range(@, N)
.parallel()
.forEach(1 -> { a[1] = b[1] + c[1];});

"features" : {
"range" : 256,
"TLs" : {
"Memory": 9, "Arithmetic": 7, "Math": 0,
"Branch": 1, "Other": 1 },
"Array Accesses" : {
"Coalesced": 3, "Offset": 0, "Stride": 0, "Random": 0},

%

Offline Prediction Model
Construction

[Obtained 291 samples by running 11 applications with different data sets
= Additional 41 samples by running additional 3 applications

d Choice is either GPU or 160 worker threads on CPU

— (b t d N I,' e \
ecode f
data1 | 57 | > =D | eature >[feature 1

| App A | 4)
——— (bytecode\ ([feature] |

data2 | P | AppA |17 | extraction SR 2) Prediction Java
vi i T ; Algonthms

.
~ -
[N}
[N}

Model Runtime

—— byteézode ([fl t] |)
eature
data 3 | &P | App B)—9,\ > | extraction)>I feature 3 | _)

Tralrnng run W|th JIT Compller Offline Model Construction
A RICE Gegrgia’ K

Platform

JCPU
= |IBM POWERS @ 3.69GHZz

v 20 cores
v'8 SMT threads per core = up to 160 threads
v 256 GB of RAM

JGPU

= NVIDIA Tesla K40m
v 12GB of Global Memory

Y G H
o RICE “°98Z8

Applications

Application Source Field Max Size Data Type
BlackScholes Finance 4,194,304 double
Crypt JGF Cryptography Size C (N=50M) byte
SpMM JGF Numerical Computing Size C (N=500K) double
MRIQ Parboil Medical Large (641\3) float
Gemm Polybench 2K x 2K int
Gesummyv Polybench 2K x 2K int
Doitgen Polybench 256x256x256 int
. Numerical .
Jacobi-1D Polybench Computing N=4M, T=1 int
Matrix Multiplication 2K x 2K double
Matrix Transpose 2K x 2K double
VecAdd 4M double

% RICE Gegrgia

Explored ML Algorithms

u

u

ASupport Vector Machines (LIBSVM)
JDecision Trees (Weka 3)

JLogistic Regression (Weka 3)
JdMultilayer Perceptron (Weka 3)

K Nearest Neighbors (Weka 3)
Decision Stumps (Weka 3)

Nalve Bayes (Weka 3)

) G H
YRICE Gegrgia|

Top 3 ML Algorithms
Full Set of Features (10 Features)

® Accuracy from 5-fold CV B Accuracy on original training data @ Accuracy on unknown testing data
Higher is better

98.28 99.66 98.28 98.28 98.97 98.68 97.60 98.97

100 \\ | %

§8O

o 60

o

3 40

Q

<< 20
0

LIBSVM J48 Tree Logistic Regression
5% RICE Georgia
3 Tech |

Further Explorations and Analyses
by Feature Subsetting

JResearch Questions

= Are the 10 features the best combination?
v Accuracy
v"Runtime prediction overheads

= \WWhich features are more important?

YRICE Gegrgia|

Feature Sub-Setting for further analyses:
10 Algorithms x 1024 Subsets

10 Features 7/ / Accuracy X%
Subset 1

1. Loop Range (Parallel Loop Size) \ \ "
2. # of Memory Accesses < ‘m\ Pecision / Accuracy Y%
3. # of Arithmetic Operations ‘““ —
4. # of Math Methods Subset 2 \\‘\‘\ / Logistie / Accuracy 2%
5. # of Branch Instructions , i ¢
6. # of Other Types of Instructions I \\‘y/ Multi Layer / o
7. # of Coalesced Memory Accesses / i ‘\“_“_ Perceptron Accuracy A%
8. # of Offset Memory Accesses i \‘\‘ .
9. # of Stride Memory Accesses g i KON Accuracy B%
10. # of Other Types of Array Accesses "
\ Decision o
Ebset 10@ ‘ Stumps / Accu racy C%
\
) Georgia Naive)
RICE Tegc 2 Boves Accuracy 14

The impact of Subsetting
(Fullset vs. the best subset)

B Subset of Features NFullset of features
Higher is better

99.656 98.282

Accuracy (%)
N b~ OO 00 O
o O O O o o

LIBSVM

% RICE Ge

orgia
Tegch

98.625 97.595 98.282 98.282

Logistic Regression J48 Tree

Feature subsetting can yield better accuracies

The impact of Subsetting
(Fullset vs. the best subset)

® Accuracy from 5-fold CV

Higher is better
99.66 99.66 99.66 98.63 98.97 98.28 98.28

\Z

X
.

\

O Accuracy on original training data M Accuracy on unknown testing data

92.68

LIBSVM (# of features = 3) Logistic Regression (# of features = 4) J48 Tree (# of features = 2)

3 rm\ RI C E Ge

orgia

Tech |

'\‘
Subsets with only a few features show great accuracies j

An example of Subsetting analyses

- With LIBSVM, 99 subsets achieved the highest accuracy

Feature # of Models with this feature Percentage of Models with this feature
range 99 100.0%
stride 96 97.0%
arithmetic 65 65.7%
Other 2 56 56.6%
memory 56 56.6%
offset 55 55.6%
branch 54 54.5%
v math 46 46.5%
e\ Other 1 43 43.4%

Runtime Prediction Overheads

LIBSVM Loglstl_c J48 Decision
Regression Trees
AUl e (e 2.278 usec 0.158 usec 0.020 usec
features)
Subset 2.107 usec 0.106 usec 0.020 usec
(3 Features) (4 Features) (2 Features)

O Subsetting can reduce prediction overheads

L However, this part is very small compared to the kernel execution part
= Based on our analysis, kernels usually take a few milliseconds

D RICE Gegrgia

| essons Learned

dML-based CPU/GPU Selection is a promising
way to choose faster devices

JLIBSVM, Logistic Regression, and J48
Decision Tree are machine learning techniques
that produce models with best accuracies

JRange, coalesced, other types of array
accesses, and arithmetic instructions are
particularly important features

) ‘ G =
SRICE Segrgia §

Lessons Learned (Cont’d)

dWhile LIBSVM (Non-linear classification) shows
excellent accuracy in prediction, runtime prediction
overheads are relatively larger compared to other
algorithms

= However, those overheads are negligible in general

JJ48 Decision Tree shows comparable accuracy to
LIBSVM. Also, the output of the J48 Decision Tree is

more human-readable and fine-tunable

¥ ’ G -
SRICE Segrgia §

Conclusions

JConclusions

= ML-based CPU/GPU Selection is a promising way
to choose faster devices

JdFuture Work
* Evaluate End-to-end performance improvements

= Explore the possibility of applying our technique to
OpenMP, OpenACC, and OpenCL

= Perform experiments on recent versions of GPUs

N ’ G -
YRICE Gegrgia|

§

Further Readings

d Code Generation and Optimizations
= “Compiling and Optimizing Java 8 Programs for GPU
Execution.” Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, Vivek
Sarkar. 24th International Conference on Parallel Architectures and

Compilation Techniques (PACT), October 2015.

 Performance Heuristics (SVM-based)

= “Machine-Learning-based Performance Heuristics for
Runtime CPU/GPU Selection.” Akihiro Hayashi, Kazuaki Ishizaki,
Gita Koblents, Vivek Sarkar. 12th International Conference on the
Principles and Practice of Programming on the Java Platform:
virtual machines, languages, and tools (PPPJ), September 2015.

RICE Geggia

Backup Slides

NRICE Gegraia

CLEES (od=+HT11v
C——IESSN Nonv=+
C—/IEES 0=+
C—— IS0 M=+
V7777715 asve
1 (ood=+T11v
C—/—T Nonv=+
—
—
[[l asva
10 (og=Hmv
—
—
—
[L] asva
/1 (cou=+11v
m— T
—
—
[] asva
] (oou=+1v
[Norv=+
] o=
—
[—/—] 3sva
CIESS (ood=+HT11v
CIESY Nonv=+
CIEEY 1a=+
CIZZS M=+
CIZZEEY 3sva
CIZZES (ood=+)11v
CIZ=S Nonv=+
] La=+
| o RN
CIZZZZESY asva
[EZZLS] (ood=+)11v
[EZZAS] Nonv=+
[EZZA] 1a=+
7777 K=+
TZZ777A\] 3svs

®

Gesum
31

Gemm

MM

MRIQ

SpMM Series

D2H 0OKernel ‘ Lower is better
1a
ch

Crypt
LS
e

A RIC F Gegrr

H2D

BlackScholes

Performance Breakdown

35

<
<3.0

Precisions and Recalls with cross-validation

Higher is better

Precision Recall Precision Recall
CPU CPU GPU GPU
Range 79.0% 100% 0% 0%
+=nlIRs 97.8% 99.1% 96.5% 91.8%
+=dIRs 98.7% 100% 100% 95.0%
+=Arrays 98.7% 100% 100% 95.0%
ALL 96.7% 100% 100% 86.9%

RICE Geordiaediction models except Range rarely make a bad decision ﬁ’
% Tech |

Java Features on GPUs

J Exceptions

= EXxplicit exception checking on GPUs
v ArrayIndexOutOfBoundsException
v'"NullPointerException
v ArithmeticException (Division by zero only)
= Further Optimizations

v Loop Versioning for redundant exception checking elimination on
GPUs based on [Artigas+, ICS’00]

J Virtual Method Calls

= Direct De-virtualization or Guarded De-virtualization
[Ishizaki+, OOPSLA'0Q]

Y G i
VRICE Seggia §

Loop Versioning Example

IntStream.range(@, N) // Speculative Checking on CPU
.parallel (] Ma 1f (Array != null
y cause
.forkEach(| outofBoundsException && @ <= Array.length
1 ->{ && N <= Array.length
Array[i] = 1 / N; R& N !'=0) {
} // Safe GPU Execution
)3 } else {
May cause May cause

NullPointerException || ArithmeticException

W Ay G H
SRICE Segrgia §

Optimizing GPU Execution

JKernel optimization

= Optimizing alignment of Java arrays on GPUs
= Utilizing “Read-Only Cache” in recent GPUs

Data transfer optimizations
= Redundant data transfer elimination
= Partial transfer if an array subscript is affine

N ’ G -
YRICE Gegrgia|

Challenge 2 : Accelerating Java programs on GPUs
The Alignment Optimization Example

Two memory transactions for a[0:31]

]
Memory address O . 128 256 384
Naive ' ' '
alignment al0]-a[31] a[32]-a[63] a[64]-a[93]
strategy ! |
O
a”“grnmem ‘a[O]-a[Sﬂ a[32]-a[63] a[64]-a[95]
strategy ‘
I Object header

AN RICE Georgia One memory transaction for a[0:31] ‘
£ Tech|/ °

Performance Evaluations

B 160 worker threads (Fork/join) BGPU <@ Higher is better
10000.0
< 844.7 7723 1164.8
= 1000.0
& 40.6
W 1000 -
wo
»w 10.0 -
g o 1.0
28
5 E 0.1
()]
=5 0.0
-
©
()]
(]
Q.
/)]

CPU: IBM POWERS8 @ 3.69GHz , GPU: NVIDIA Tesla K40m

How to evaluate prediction models:
5-fold cross validation

O Overfitting problem:

= Prediction model may be tailored to the eleven applications
if training data = testing data

L To avoid the overfitting problem:
= (Calculate the accuracy of the prediction model using 5-fold cross

validation TRAINING DATA (291 samples)

: Jbse ' DSE el S ' [
Y 1
Used for TESTING Build a prediction model trained on Subset 2-5
Accuracy : X%
DSE l JDSE ! .I C oE1s :

I Build a prediction model trained
' on Subset 1, 3-5 38

]
AAS RICE Geoklgiasl for TESTING
Teabeuracy : Y%

