

Exploration of Supervised Machine Learning Techniques for Runtime Selection of CPU vs.GPU Execution in Java Programs

Gloria Kim (Rice University) Akihiro Hayashi (Rice University)

Vivek Sarkar (Georgia Tech)

Java For HPC?

4K x 4K Matrix Multiply	GFLOPS	Absolute speedup	
Python	0.005	1	
Java	0.058	11	Any ways to
С	0.253	47	accelerate
Parallel loops	1.969	366	Java
Parallel divide and conquer	36.168	6,724	programs?
+ vectorization	124.945	23,230	
+ AVX intrinsics	335.217	62,323	
Strassen	361.681	67,243	

Dual Socket Intel Xeon E5-2666 v3, 18cores, 2.9GHz, 60-GiB DRAM

Credits : Charles Leiserson, Ken Kennedy Award Lecture @ Rice University, Karthik Murthy @ PACT2015

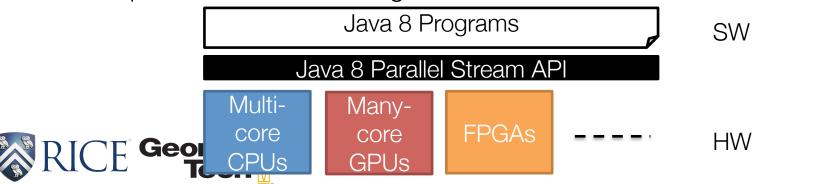
Java 8 Parallel Streams APIs

Explicit Parallelism with *lambda expressions*

IntStream.range(0, N)
 .parallel()
 .forEach(i ->
 <lambda>);

Explicit Parallelism with Java

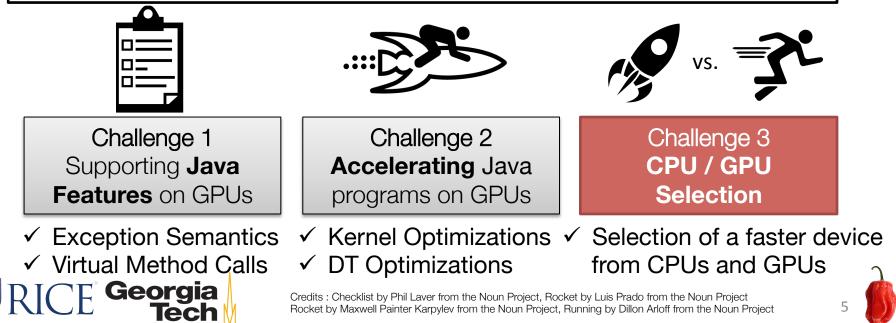
- High-level parallel programming with Java offers opportunities for
 - preserving portability
 - ✓ Low-level parallel/accelerator programming is not required
 - enabling compiler to perform parallel-aware optimizations and code generation



Challenges for GPU Code Generation

Standard Java API Call for Parallelism

IntStream.range(0, N).parallel().forEach(i -> <lambda>);



Related Work: Java + GPU

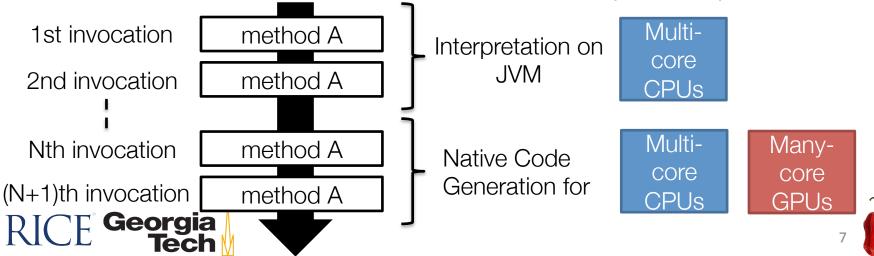
	Lang	JIT	GPU Kernel	Device Selection
JCUDA	Java	-	CUDA	GPU only
Lime	Lime	~	Override map/reduce	Static
Firepile	Scala	~	reduce	Static
JaBEE	Java	~	Override run	GPU only
Aparapi	Java	~	map	Static
Hadoop-CL	Java	~	Override map/reduce	Static
RootBeer	Java	~	Override run	Not Described
HJ-OpenCL	HJ	-	forall / lambda	Static
PPPJ09 (auto)	Java	~	For-loop	Dynamic with Regression
Our Work	Java	~	Parallel Stream	Dynamic with Machine Learning

None of these approaches considers Java 8 Parallel Stream APIs and a dynamic device selection with machine-learning

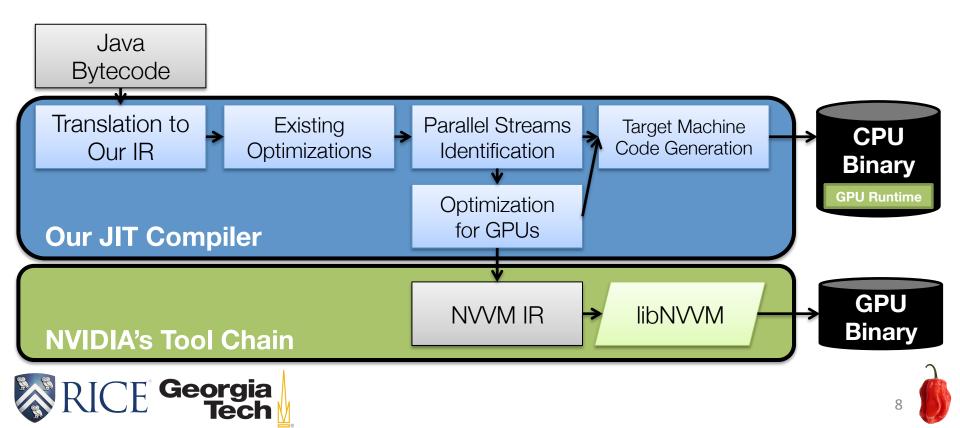
JIT Compilation for GPU

IBM Java 8 Compiler

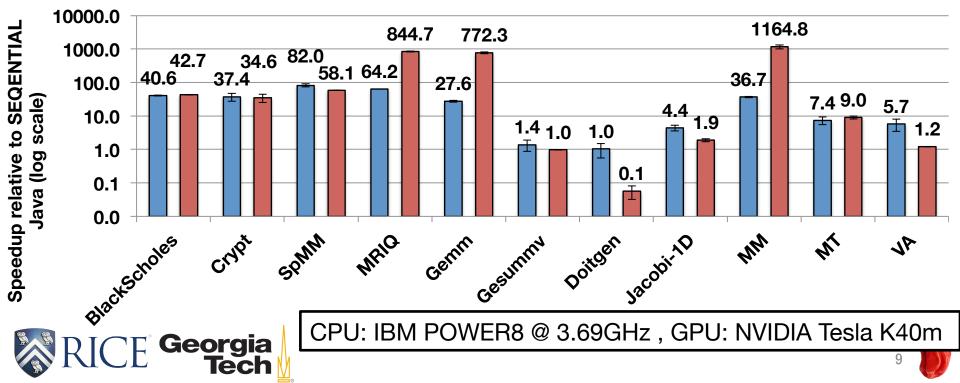
 Built on top of the production version of the IBM Java 8 runtime environment (J9 VM)



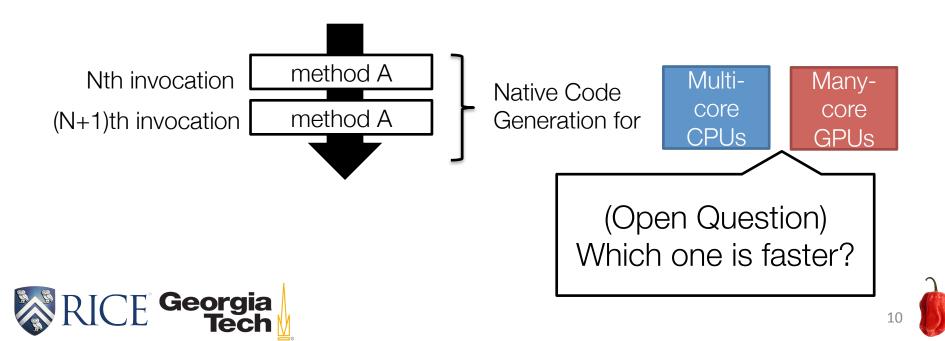
The JIT Compilation Flow

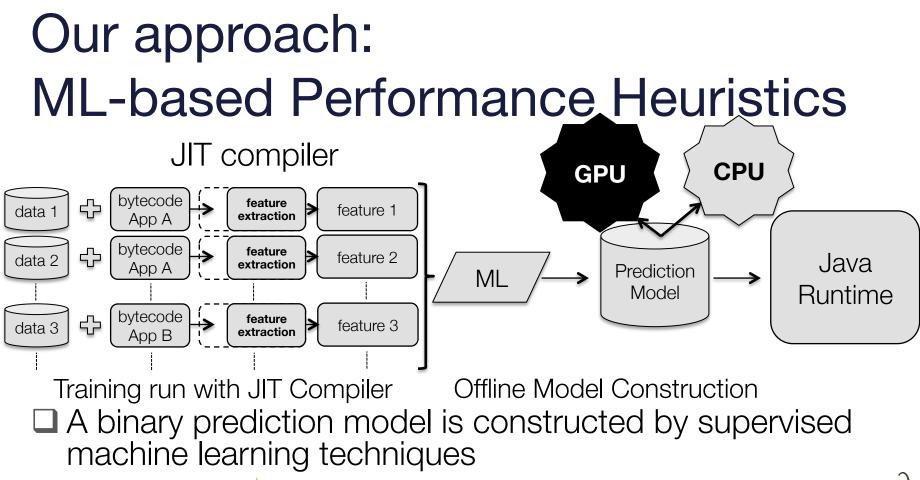


Performance Evaluations



Runtime CPU/GPU Selection





RICE **Georgia**

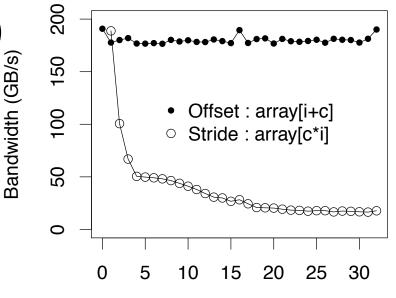
Features of program

- Loop Range (Parallel Loop Size)
- The dynamic number of Instructions in IR
 - Memory Access
 - Arithmetic Operations
 - Math Methods
 - Branch Instructions
 - Other Types of Instructions

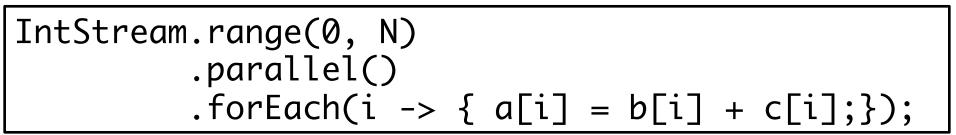
Features of program (Cont'd)

The dynamic number of Array Accesses

- Coalesced Access (a[i])
- Offset Access (a[i+c])
- Stride Access (a[c*i])
- Other Access (a[b[i]])



An example of feature vector



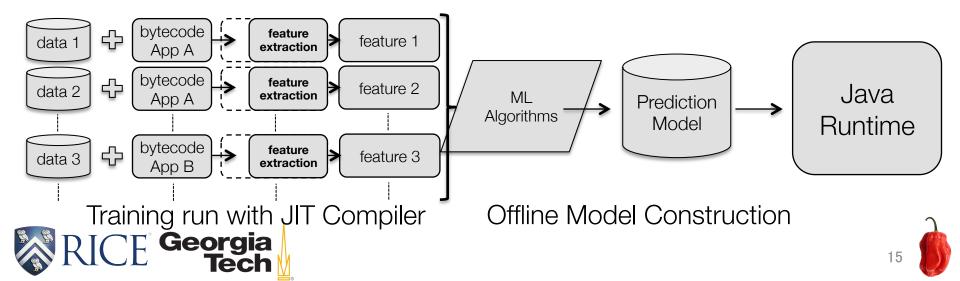
```
"features" : {
    "range": 256,
    "ILs" : {
        "Memory": 9, "Arithmetic": 7, "Math": 0,
        "Branch": 1, "Other": 1 },
        "Array Accesses" : {
            "Coalesced": 3, "Offset": 0, "Stride": 0, "Random": 0},
}
```

Offline Prediction Model Construction

Obtained 291 samples by running 11 applications with different data sets

Additional 41 samples by running additional 3 applications

Choice is either GPU or 160 worker threads on CPU



Platform

- IBM POWER8 @ 3.69GHz
 - √20 cores
 - ✓ 8 SMT threads per core = up to 160 threads ✓ 256 GB of RAM

GPU

NVIDIA Tesla K40m
 12GB of Global Memory

Applications

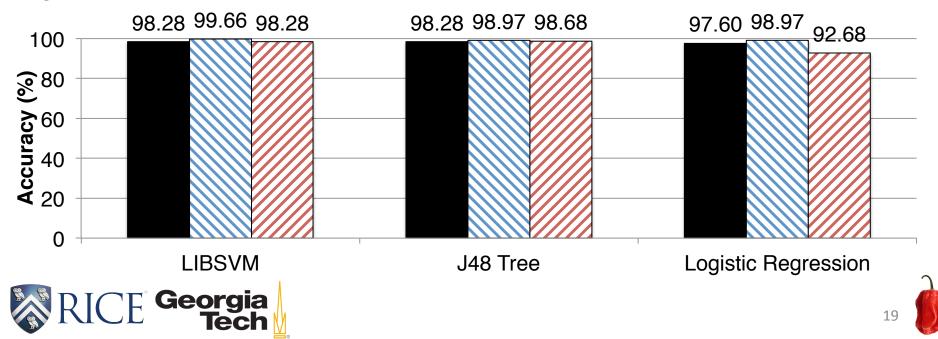
Application	Source	Field	Max Size	Data Type
BlackScholes		Finance	4,194,304	double
Crypt	JGF	Cryptography	Size C (N=50M)	byte
SpMM	JGF	Numerical Computing	Size C (N=500K)	double
MRIQ	Parboil	Medical	Large (64^3)	float
Gemm	Polybench		2K x 2K	int
Gesummv	Polybench		2K x 2K	int
Doitgen	Polybench	Numerical Computing	256x256x256	int
Jacobi-1D	Polybench		N=4M, T=1	int
Matrix Multiplication			2K x 2K	double
Matrix Transpose			2K x 2K	double
VecAdd			4M	double

Explored ML Algorithms

- Support Vector Machines (LIBSVM)
 Decision Trees (Weka 3)
 Logistic Regression (Weka 3)
- Multilayer Perceptron (Weka 3)
- k Nearest Neighbors (Weka 3)
- Decision Stumps (Weka 3)
- ■Naïve Bayes (Weka 3)

Top 3 ML Algorithms Full Set of Features (10 Features)

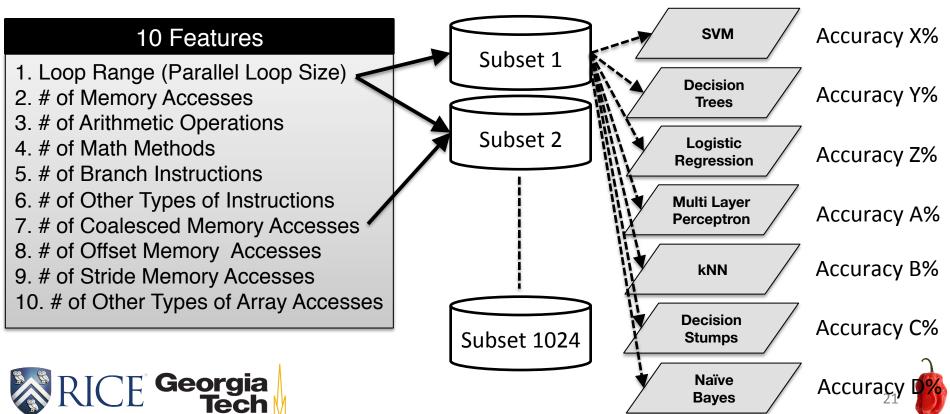
■ Accuracy from 5-fold CV N Accuracy on original training data Accuracy on unknown testing data Higher is better

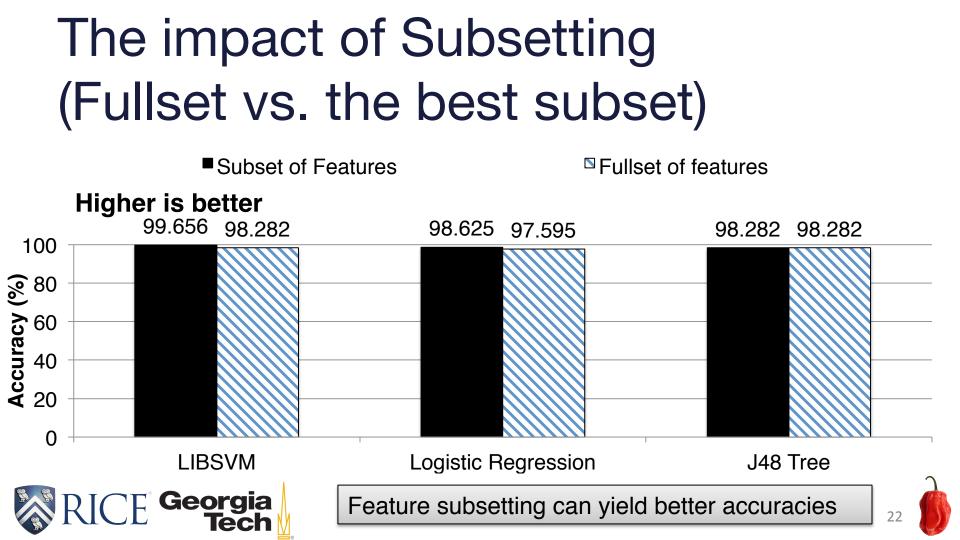


Further Explorations and Analysesby Feature SubsettingResearch Questions

- Are the 10 features the best combination?
 - ✓Accuracy
 - ✓ Runtime prediction overheads
- Which features are more important?

Feature Sub-Setting for further analyses: 10 Algorithms x 1024 Subsets

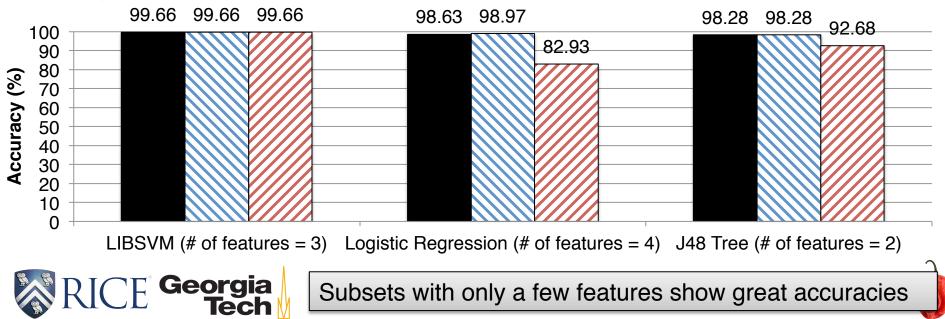




The impact of Subsetting (Fullset vs. the best subset)

Accuracy from 5-fold CV CACCuracy on original training data Accuracy on unknown testing data

Higher is better



An example of Subsetting analyses

□ With LIBSVM, 99 subsets achieved the highest accuracy

Feature	# of Models with this feature	Percentage of Models with this feature
range	99	100.0%
stride	96	97.0%
arithmetic	65	65.7%
Other 2	56	56.6%
memory	56	56.6%
offset	55	55.6%
branch	54	54.5%
math	46	46.5%
Other 1	43	43.4%

Runtime Prediction Overheads

	LIBSVM	Logistic Regression	J48 Decision Trees
Full Set (10 features)	2.278 usec	0.158 usec	0.020 usec
Subset	2.107 usec (3 Features)	0.106 usec (4 Features)	0.020 usec (2 Features)

- ❑ Subsetting can reduce prediction overheads
- □ However, this part is very small compared to the kernel execution part
 - Based on our analysis, kernels usually take a few milliseconds

Lessons Learned

- ML-based CPU/GPU Selection is a promising way to choose faster devices
- LIBSVM, Logistic Regression, and J48 Decision Tree are machine learning techniques that produce models with best accuracies
- Range, coalesced, other types of array accesses, and arithmetic instructions are particularly important features

Lessons Learned (Cont'd)

While LIBSVM (Non-linear classification) shows excellent accuracy in prediction, runtime prediction overheads are relatively larger compared to other algorithms

However, those overheads are negligible in general

□ J48 Decision Tree shows comparable accuracy to LIBSVM. Also, the output of the J48 Decision Tree is more human-readable and fine-tunable

Conclusions

Conclusions

 ML-based CPU/GPU Selection is a promising way to choose faster devices

□ Future Work

- Evaluate End-to-end performance improvements
- Explore the possibility of applying our technique to OpenMP, OpenACC, and OpenCL
- Perform experiments on recent versions of GPUs

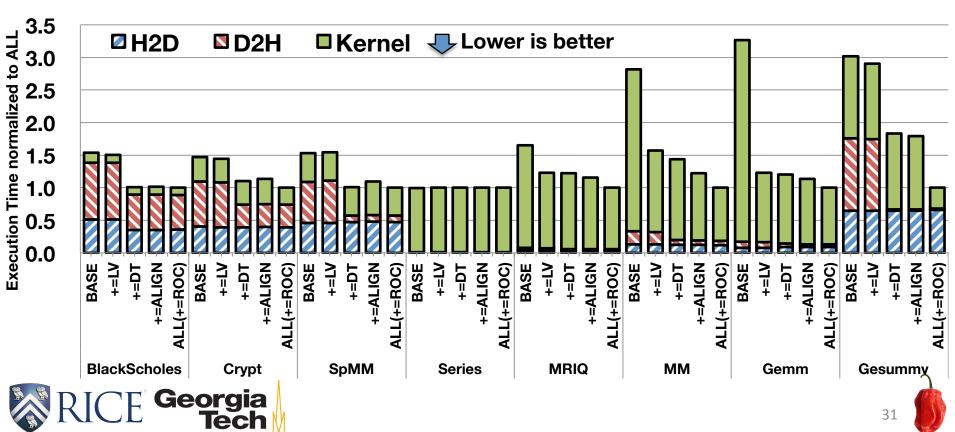
Further Readings

Code Generation and Optimizations

- "Compiling and Optimizing Java 8 Programs for GPU Execution." Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, Vivek Sarkar. 24th International Conference on Parallel Architectures and Compilation Techniques (PACT), October 2015.
- Performance Heuristics (SVM-based)
 - "Machine-Learning-based Performance Heuristics for Runtime CPU/GPU Selection." Akihiro Hayashi, Kazuaki Ishizaki, Gita Koblents, Vivek Sarkar. 12th International Conference on the Principles and Practice of Programming on the Java Platform: virtual machines, languages, and tools (PPPJ), September 2015.

Backup Slides

Performance Breakdown



Precisions and Recalls with cross-validation

Higher is better

	Precision CPU	Recall CPU	Precision GPU	Recall GPU
Range	79.0%	100%	0%	0%
+=nIRs	97.8%	99.1%	96.5%	91.8%
+=dIRs	98.7%	100%	100%	95.0%
+=Arrays	98.7%	100%	100%	95.0%
ALL	96.7%	100%	100%	86.9%
RICE Georgia e diction models except Range rarely make a bad decision ₃₂				

Java Features on GPUs

Exceptions

- Explicit exception checking on GPUs
 - \checkmark ArrayIndexOutOfBoundsException
 - ✓ NullPointerException
 - ✓ ArithmeticException (Division by zero only)
- Further Optimizations
 - Loop Versioning for redundant exception checking elimination on GPUs based on [Artigas+, ICS'00]

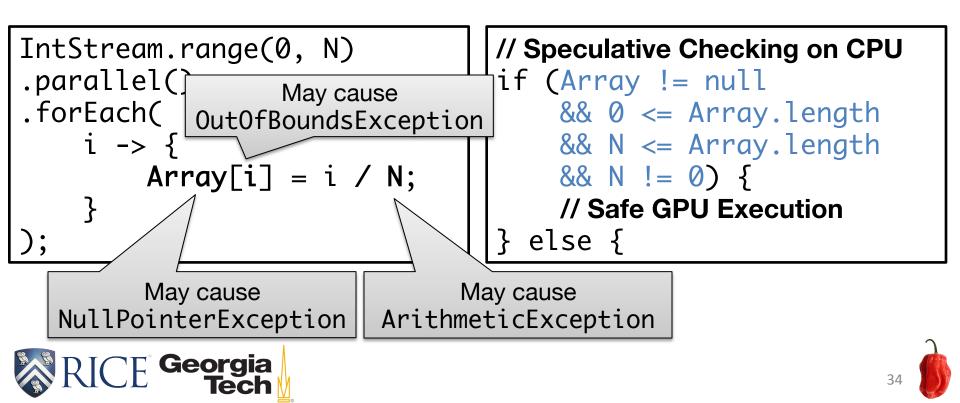
□ Virtual Method Calls

Georgia

 Direct De-virtualization or Guarded De-virtualization [Ishizaki+, OOPSLA'00]

Challenge 1 : Supporting Java Features on GPUs

Loop Versioning Example



Optimizing GPU Execution

Kernel optimization

- Optimizing alignment of Java arrays on GPUs
- Utilizing "Read-Only Cache" in recent GPUs
- Data transfer optimizations
 - Redundant data transfer elimination
 - Partial transfer if an array subscript is affine

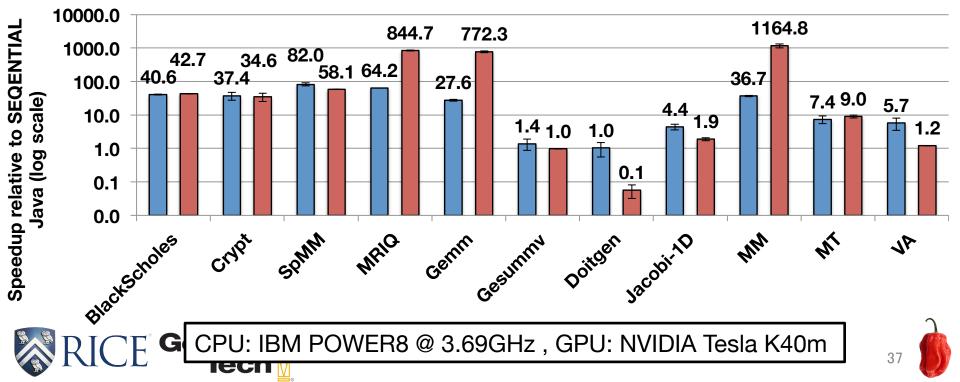
Challenge 2 : Accelerating Java programs on GPUs

The Alignment Optimization Example

Two memory transactions for a[0:31] Memory address 0 128 256 384 Naive a[0]-a[31] a[32]-a[63] a[64]-a[95] alignment strategy Our a[0]-a[31] a[32]-a[63] a[64]-a[95] alignment strategy Object header Georgia Tech One memory transaction for a[0:31] 36

Challenge 2 : Accelerating Java programs on GPUs

Performance Evaluations



How to evaluate prediction models: 5-fold cross validation

Overfitting problem:

- Prediction model may be tailored to the eleven applications if training data = testing data
- □ To avoid the *overfitting* problem:
 - Calculate the accuracy of the prediction model using 5-fold cross validation
 TRAINING DATA (291 samples)

