
Exploration of Supervised Machine Learning
Techniques for Runtime Selection of CPU vs.GPU

Execution in Java Programs

Gloria Kim (Rice University)

Akihiro Hayashi (Rice University)

Vivek Sarkar (Georgia Tech)

1	

Java For HPC?

Dual Socket Intel Xeon E5-2666 v3, 18cores, 2.9GHz, 60-GiB DRAM

2	

4K x 4K Matrix Multiply
 GFLOPS
 Absolute speedup

Python
 0.005
 1

Java
 0.058
 11

C
 0.253
 47

Parallel loops
 1.969
 366

Parallel divide and conquer
 36.168
 6,724

+ vectorization
 124.945
 23,230

+ AVX intrinsics
 335.217
 62,323

Strassen
 361.681
 67,243

Credits : Charles Leiserson, Ken Kennedy Award Lecture @ Rice University, Karthik Murthy @ PACT2015

Any ways to
accelerate

Java
programs?

Java 8 Parallel Streams APIs

q Explicit Parallelism with lambda expressions

IntStream.range(0, N)
 .parallel()
 .forEach(i ->
 <lambda>);

3	

Explicit Parallelism with Java

q High-level parallel programming with Java"

offers opportunities for

§  preserving portability

ü Low-level parallel/accelerator programming is not required

§  enabling compiler to perform parallel-aware "

optimizations and code generation

Java 8 Parallel Stream API

Multi-
core

CPUs

Many-
core

GPUs

FPGAs

Java 8 Programs

HW

SW

4	

Challenges for  
GPU Code Generation

5	

IntStream.range(0, N).parallel().forEach(i -> <lambda>);

Challenge 1

Supporting Java

Features on GPUs

Challenge 3

CPU / GPU

Selection

Challenge 2

Accelerating Java

programs on GPUs

ü  Exception Semantics

ü  Virtual Method Calls

ü  Kernel Optimizations

ü  DT Optimizations

ü  Selection of a faster device  
from CPUs and GPUs

Standard	Java	API	Call	for	Parallelism	

Credits : Checklist by Phil Laver from the Noun Project, Rocket by Luis Prado from the Noun Project

Rocket by Maxwell Painter Karpylev from the Noun Project, Running by Dillon Arloff from the Noun Project

vs.	

Related Work: Java + GPU

6	

Lang
 JIT
 GPU Kernel
 Device Selection

JCUDA
 Java
 -
 CUDA
 GPU only

Lime
 Lime
 ✔
 Override map/reduce
 Static

Firepile
 Scala
 ✔
 reduce
 Static

JaBEE
 Java
 ✔
 Override run
 GPU only

Aparapi
 Java
 ✔
 map
 Static

Hadoop-CL
 Java
 ✔
 Override map/reduce
 Static

RootBeer
 Java
 ✔
 Override run
 Not Described

HJ-OpenCL
 HJ
 -
 forall / lambda
 Static

PPPJ09 (auto)
 Java
 ✔
 For-loop
 Dynamic with Regression

Our Work
 Java
 ✔
 Parallel Stream
 Dynamic with Machine Learning

None of these approaches considers Java 8 Parallel Stream APIs
and a dynamic device selection with machine-learning

JIT Compilation for GPU

q IBM Java 8 Compiler

§  Built on top of the production version of the "
IBM Java 8 runtime environment (J9 VM)

7	

Multi-
core

CPUs

Many-
core

GPUs

method A

method A

method A

method A

Interpretation on

JVM

1st invocation

2nd invocation

Nth invocation

(N+1)th invocation

Native Code

Generation for

Multi-
core

CPUs

The JIT Compilation Flow

8	

Java

Bytecode

Translation to

Our IR

Parallel Streams

Identification

Optimization

for GPUs

NVVM IR
 libNVVM

Existing

Optimizations

Target Machine

Code Generation

GPU

Binary

CPU

Binary

GPU Runtime

Our JIT Compiler

NVIDIA’s Tool Chain

Performance Evaluations

9	

40.6
 37.4

82.0

64.2
 27.6

1.4
 1.0

4.4

36.7

7.4
 5.7

42.7
 34.6
 58.1

844.7
 772.3

1.0

0.1

1.9

1164.8

9.0

1.2

0.0

0.1

1.0

10.0

100.0

1000.0

10000.0

Sp
ee

du
p

re
la

tiv
e

to
 S

EQ
EN

TI
AL

Ja

va
 (l

og
 s

ca
le

)

Higher is better
160 worker threads (Fork/join)
 GPU

CPU: IBM POWER8 @ 3.69GHz , GPU: NVIDIA Tesla K40m

Runtime CPU/GPU Selection

10	

Multi-
core

CPUs

Many-
core

GPUs

method A

method A

Nth invocation

(N+1)th invocation

Native Code

Generation for

(Open Question)

Which one is faster?

Our approach: 
ML-based Performance Heuristics

q A binary prediction model is constructed by supervised
machine learning techniques

11	

bytecode"
App A	

Prediction

Model

JIT compiler	
feature 1
data 1

bytecode"
App A	data 2

bytecode"
App B	data 3

feature 2

feature 3

ML

Training run with JIT Compiler
 Offline Model Construction

feature

extraction	

feature

extraction	

feature

extraction	

Java

Runtime	

CPU
GPU

Features of program

q Loop Range (Parallel Loop Size)

q The dynamic number of Instructions in IR

§  Memory Access

§  Arithmetic Operations

§  Math Methods

§  Branch Instructions

§  Other Types of Instructions

12	

Features of program (Cont’d)

q The dynamic number of Array Accesses

§ Coalesced Access (a[i])

§ Offset Access (a[i+c])

§  Stride Access (a[c*i])

§ Other Access (a[b[i]])

13	

0 5 10 15 20 25 30

0
50

10
0

15
0

20
0

c : offset or stride size
Ba

nd
w

id
th

 (G
B/

s)

●

● ● ●
● ● ● ●

● ● ● ● ● ● ● ●

●

●
● ●

●
● ● ● ● ● ●

● ● ● ● ●
●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

Offset : array[i+c]
Stride : array[c*i]

An example of feature vector

14	

"features" : {
 "range": 256,
 "ILs" : {
 "Memory": 9, "Arithmetic": 7, "Math": 0,
 "Branch": 1, "Other": 1 },
 "Array Accesses" : {
 "Coalesced": 3, "Offset": 0, "Stride": 0, "Random": 0},
}

IntStream.range(0, N)
 .parallel()
 .forEach(i -> { a[i] = b[i] + c[i];});

Offline Prediction Model
Construction

q  Obtained 291 samples by running 11 applications with different data sets

§  Additional 41 samples by running additional 3 applications

q  Choice is either GPU or 160 worker threads on CPU

15	

bytecode"
App A	

Prediction

Model

feature 1
data 1

bytecode"
App A	data 2

bytecode"
App B	data 3

feature 2

feature 3

ML
Algorithms

feature

extraction	

feature

extraction	

feature

extraction	

Java

Runtime	

Training run with JIT Compiler
 Offline Model Construction

Platform

q CPU

§  IBM POWER8 @ 3.69GHz

ü 20 cores

ü 8 SMT threads per core = up to 160 threads

ü 256 GB of RAM

q GPU

§  NVIDIA Tesla K40m

ü 12GB of Global Memory

16	

Applications

17	

Application
 Source
 Field
 Max Size
 Data Type

BlackScholes
 Finance
 4,194,304
 double

Crypt
 JGF
 Cryptography
 Size C (N=50M)
 byte

SpMM
 JGF
 Numerical Computing
 Size C (N=500K)
 double

MRIQ
 Parboil
 Medical
 Large (64^3)
 float

Gemm
 Polybench

Numerical

Computing

2K x 2K
 int

Gesummv
 Polybench
 2K x 2K
 int

Doitgen
 Polybench
 256x256x256
 int

Jacobi-1D
 Polybench
 N=4M, T=1
 int

Matrix Multiplication
 2K x 2K
 double

Matrix Transpose
 2K x 2K
 double

VecAdd
 4M
 double

Explored ML Algorithms

q Support Vector Machines (LIBSVM)

q Decision Trees (Weka 3)

q Logistic Regression (Weka 3)

q Multilayer Perceptron (Weka 3)

q k Nearest Neighbors (Weka 3)

q Decision Stumps (Weka 3)

q Naïve Bayes (Weka 3)

18	

Top 3 ML Algorithms 
Full Set of Features (10 Features)

19	

98.28 98.28 97.6099.66 98.97 98.9798.28 98.68 92.68

0

20

40

60

80

100

LIBSVM J48 Tree Logistic Regression

A
cc

ur
ac

y
(%

)

Higher is better
Accuracy from 5-fold CV Accuracy on original training data Accuracy on unknown testing data

Further Explorations and Analyses
by Feature Subsetting

q Research Questions

§  Are the 10 features the best combination?

ü Accuracy

ü Runtime prediction overheads

§ Which features are more important?

20	

Feature Sub-Setting for further analyses:  
10 Algorithms x 1024 Subsets

21	

1. Loop Range (Parallel Loop Size)
2. # of Memory Accesses
3. # of Arithmetic Operations
4. # of Math Methods
5. # of Branch Instructions
6. # of Other Types of Instructions
7. # of Coalesced Memory Accesses
8. # of Offset Memory Accesses
9. # of Stride Memory Accesses
10. # of Other Types of Array Accesses

10 Features
Subset	1	

Subset	2	

Subset	1024	

SVM

Decision
Trees

Logistic
Regression

Multi Layer
Perceptron

kNN

Decision
Stumps

Naïve

Bayes

Accuracy	X%	

Accuracy	Y%	

Accuracy	Z%	

Accuracy	A%	

Accuracy	B%	

Accuracy	C%	

Accuracy	D%	

The impact of Subsetting 
(Fullset vs. the best subset)

22	

99.656 98.625 98.28298.282 97.595 98.282

0

20

40

60

80

100

LIBSVM Logistic Regression J48 Tree

A
cc

ur
ac

y
(%

)

Higher is better
Subset of Features Fullset of features

Feature subsetting can yield better accuracies

The impact of Subsetting 
(Fullset vs. the best subset)

23	

99.66 98.63 98.2899.66 98.97 98.2899.66
82.93

92.68

0
10
20
30
40
50
60
70
80
90

100

LIBSVM (# of features = 3) Logistic Regression (# of features = 4) J48 Tree (# of features = 2)

A
cc

ur
ac

y
(%

)

Higher is better
Accuracy from 5-fold CV Accuracy on original training data Accuracy on unknown testing data

Subsets with only a few features show great accuracies

An example of Subsetting analyses

24	

q With LIBSVM, 99 subsets achieved the highest accuracy

Feature # of Models with this feature Percentage	of	Models	with	this	feature		

range 99 100.0%
stride 96 97.0%

arithmetic 65 65.7%
Other 2 56 56.6%
memory 56 56.6%

offset 55 55.6%
branch 54 54.5%
math 46 46.5%

Other 1 43 43.4%

Runtime Prediction Overheads

LIBSVM Logistic

Regression
J48 Decision

Trees

Full Set (10
features) 2.278 usec 0.158 usec 0.020 usec

Subset 2.107 usec
(3 Features)

0.106 usec
(4 Features)

0.020 usec
(2 Features)

25	

q  Subsetting can reduce prediction overheads

q  However, this part is very small compared to the kernel execution part

§  Based on our analysis, kernels usually take a few milliseconds

Lessons Learned

q ML-based CPU/GPU Selection is a promising

way to choose faster devices

q LIBSVM, Logistic Regression, and J48

Decision Tree are machine learning techniques
that produce models with best accuracies

q Range, coalesced, other types of array
accesses, and arithmetic instructions are
particularly important features

26	

Lessons Learned (Cont’d)

q While LIBSVM (Non-linear classification) shows

excellent accuracy in prediction, runtime prediction
overheads are relatively larger compared to other
algorithms

§  However, those overheads are negligible in general

q J48 Decision Tree shows comparable accuracy to
LIBSVM. Also, the output of the J48 Decision Tree is
more human-readable and fine-tunable

27	

Conclusions

q Conclusions

§  ML-based CPU/GPU Selection is a promising way
to choose faster devices

q Future Work

§  Evaluate End-to-end performance improvements

§  Explore the possibility of applying our technique to

OpenMP, OpenACC, and OpenCL

§  Perform experiments on recent versions of GPUs

28	

Further Readings

q Code Generation and Optimizations

§  “Compiling and Optimizing Java 8 Programs for GPU
Execution.” Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, Vivek
Sarkar. 24th International Conference on Parallel Architectures and
Compilation Techniques (PACT), October 2015.

q  Performance Heuristics (SVM-based)

§  “Machine-Learning-based Performance Heuristics for

Runtime CPU/GPU Selection.” Akihiro Hayashi, Kazuaki Ishizaki,
Gita Koblents, Vivek Sarkar. 12th International Conference on the
Principles and Practice of Programming on the Java Platform:
virtual machines, languages, and tools (PPPJ), September 2015.

29	

Backup Slides

30	

Performance Breakdown

31	

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

BA
SE

+=

LV

+=
D

T

+=

AL
IG

N

AL
L(

+=
R

O
C

)

BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)

BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)

BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)

BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)

BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)

BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)

BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)

BlackScholes
 Crypt
 SpMM
 Series
 MRIQ
 MM
 Gemm
 Gesummv

Ex
ec

ut
io

n
Ti

m
e

no
rm

al
iz

ed
 to

 A
LL

Lower is better
H2D
 D2H
 Kernel

Precisions and Recalls with cross-validation

32	

Precision

CPU

Recall

CPU

Precision

GPU

Recall

GPU

Range
 79.0%
 100%
 0%
 0%

+=nIRs
 97.8%
 99.1%
 96.5%
 91.8%

+=dIRs
 98.7%
 100%
 100%
 95.0%

+=Arrays
 98.7%
 100%
 100%
 95.0%

ALL
 96.7%
 100%
 100%
 86.9%

Higher	is	be6er	

All	predic*on	models	except	Range	rarely	make	a	bad	decision		

Java Features on GPUs

q Exceptions

§  Explicit exception checking on GPUs

ü ArrayIndexOutOfBoundsException
ü NullPointerException
ü ArithmeticException (Division by zero only)

§  Further Optimizations

ü Loop Versioning for redundant exception checking elimination on

GPUs based on [Artigas+, ICS’00]

q Virtual Method Calls

§  Direct De-virtualization or Guarded De-virtualization "
[Ishizaki+, OOPSLA’00]

33	

Challenge 1 : Supporting Java Features on GPUs

Loop Versioning Example

34	

IntStream.range(0, N)  
.parallel()  
.forEach( 
 i -> {
 Array[i] = i / N;  
 }  
);

// Speculative Checking on CPU

if (Array != null
 && 0 <= Array.length
 && N <= Array.length
 && N != 0) {
 // Safe GPU Execution

} else {

May cause

OutOfBoundsException

May cause

ArithmeticException

May cause

NullPointerException

Challenge 1 : Supporting Java Features on GPUs

Optimizing GPU Execution

q Kernel optimization

§ Optimizing alignment of Java arrays on GPUs

§  Utilizing “Read-Only Cache” in recent GPUs

q Data transfer optimizations

§  Redundant data transfer elimination

§  Partial transfer if an array subscript is affine

35	

Challenge 2 : Accelerating Java programs on GPUs

The Alignment Optimization Example

36	

0
 128

a[0]-a[31]

Object header

Memory address

a[32]-a[63]

Naive"
alignment"
strategy

a[0]-a[31]
 a[32]-a[63]

256
 384

Our"
alignment"
strategy

One memory transaction for a[0:31]

Two memory transactions for a[0:31]

a[64]-a[95]

a[64]-a[95]

Challenge 2 : Accelerating Java programs on GPUs

Performance Evaluations

37	

40.6
 37.4

82.0

64.2
 27.6

1.4
 1.0

4.4

36.7

7.4
 5.7

42.7
 34.6
 58.1

844.7
 772.3

1.0

0.1

1.9

1164.8

9.0

1.2

0.0

0.1

1.0

10.0

100.0

1000.0

10000.0

Sp
ee

du
p

re
la

tiv
e

to
 S

EQ
EN

TI
AL

Ja

va
 (l

og
 s

ca
le

)

Higher is better
160 worker threads (Fork/join)
 GPU

CPU: IBM POWER8 @ 3.69GHz , GPU: NVIDIA Tesla K40m

Challenge 2 : Accelerating Java programs on GPUs

How to evaluate prediction models: 
5-fold cross validation

q  Overfitting problem:

§  Prediction model may be tailored to the eleven applications "
if training data = testing data

q  To avoid the overfitting problem:

§  Calculate the accuracy of the prediction model using 5-fold cross

validation

38	

Subset 1
 Subset 2
 Subset 3
 Subset 4
 Subset 5

Subset 2
Subset 1
 Subset 3
 Subset 4
 Subset 5

Build a prediction model trained on Subset 2-5
Used for TESTING

Accuracy : X%

Used for TESTING

Accuracy : Y%

TRAINING DATA (291 samples)

Build a prediction model trained  
on Subset 1, 3-5

