
Exploration of Supervised Machine Learning
Techniques for Runtime Selection of CPU vs.GPU

Execution in Java Programs
Gloria Kim (Rice University)

Akihiro Hayashi (Rice University)
Vivek Sarkar (Georgia Tech)

1	

Java For HPC?

Dual Socket Intel Xeon E5-2666 v3, 18cores, 2.9GHz, 60-GiB DRAM

2	

4K x 4K Matrix Multiply GFLOPS Absolute speedup
Python 0.005 1
Java 0.058 11

C 0.253 47
Parallel loops 1.969 366

Parallel divide and conquer 36.168 6,724
+ vectorization 124.945 23,230
+ AVX intrinsics 335.217 62,323

Strassen 361.681 67,243

Credits : Charles Leiserson, Ken Kennedy Award Lecture @ Rice University, Karthik Murthy @ PACT2015

Any ways to
accelerate

Java
programs?

Java 8 Parallel Streams APIs
q Explicit Parallelism with lambda expressions

IntStream.range(0, N)
 .parallel()
 .forEach(i ->
 <lambda>);

3	

Explicit Parallelism with Java
q High-level parallel programming with Java"

offers opportunities for
§  preserving portability

ü Low-level parallel/accelerator programming is not required
§  enabling compiler to perform parallel-aware "

optimizations and code generation

Java 8 Parallel Stream API
Multi-
core

CPUs

Many-
core

GPUs
FPGAs

Java 8 Programs

HW

SW

4	

Challenges for  
GPU Code Generation

5	

IntStream.range(0, N).parallel().forEach(i -> <lambda>);

Challenge 1
Supporting Java

Features on GPUs

Challenge 3
CPU / GPU
Selection

Challenge 2
Accelerating Java
programs on GPUs

ü  Exception Semantics
ü  Virtual Method Calls

ü  Kernel Optimizations
ü  DT Optimizations

ü  Selection of a faster device  
from CPUs and GPUs

Standard	Java	API	Call	for	Parallelism	

Credits : Checklist by Phil Laver from the Noun Project, Rocket by Luis Prado from the Noun Project
Rocket by Maxwell Painter Karpylev from the Noun Project, Running by Dillon Arloff from the Noun Project

vs.	

Related Work: Java + GPU

6	

Lang JIT GPU Kernel Device Selection
JCUDA Java - CUDA GPU only

Lime Lime ✔ Override map/reduce Static
Firepile Scala ✔ reduce Static
JaBEE Java ✔ Override run GPU only

Aparapi Java ✔ map Static
Hadoop-CL Java ✔ Override map/reduce Static
RootBeer Java ✔ Override run Not Described

HJ-OpenCL HJ - forall / lambda Static
PPPJ09 (auto) Java ✔ For-loop Dynamic with Regression

Our Work Java ✔ Parallel Stream Dynamic with Machine Learning

None of these approaches considers Java 8 Parallel Stream APIs
and a dynamic device selection with machine-learning

JIT Compilation for GPU
q IBM Java 8 Compiler

§  Built on top of the production version of the "
IBM Java 8 runtime environment (J9 VM)

7	

Multi-
core

CPUs

Many-
core

GPUs

method A

method A

method A

method A

Interpretation on
JVM

1st invocation

2nd invocation

Nth invocation
(N+1)th invocation

Native Code
Generation for

Multi-
core

CPUs

The JIT Compilation Flow

8	

Java
Bytecode

Translation to
Our IR

Parallel Streams
Identification

Optimization
for GPUs

NVVM IR libNVVM

Existing
Optimizations

Target Machine
Code Generation

GPU
Binary

CPU
Binary

GPU Runtime

Our JIT Compiler

NVIDIA’s Tool Chain

Performance Evaluations

9	

40.6 37.4
82.0

64.2 27.6

1.4 1.0
4.4

36.7
7.4 5.7

42.7 34.6 58.1

844.7 772.3

1.0

0.1

1.9

1164.8

9.0
1.2

0.0

0.1

1.0

10.0

100.0

1000.0

10000.0

Sp
ee

du
p

re
la

tiv
e

to
 S

EQ
EN

TI
AL

Ja

va
 (l

og
 s

ca
le

)

Higher is better160 worker threads (Fork/join) GPU

CPU: IBM POWER8 @ 3.69GHz , GPU: NVIDIA Tesla K40m

Runtime CPU/GPU Selection

10	

Multi-
core

CPUs

Many-
core

GPUs

method A

method A
Nth invocation

(N+1)th invocation
Native Code
Generation for

(Open Question)
Which one is faster?

Our approach: 
ML-based Performance Heuristics

q A binary prediction model is constructed by supervised
machine learning techniques

11	

bytecode"
App A	

Prediction
Model

JIT compiler	
feature 1data 1

bytecode"
App A	data 2

bytecode"
App B	data 3

feature 2

feature 3

ML

Training run with JIT Compiler Offline Model Construction

feature
extraction	

feature
extraction	

feature
extraction	

Java
Runtime	

CPUGPU

Features of program
q Loop Range (Parallel Loop Size)
q The dynamic number of Instructions in IR

§  Memory Access
§  Arithmetic Operations
§  Math Methods
§  Branch Instructions
§  Other Types of Instructions

12	

Features of program (Cont’d)
q The dynamic number of Array Accesses

§ Coalesced Access (a[i])
§ Offset Access (a[i+c])
§  Stride Access (a[c*i])
§ Other Access (a[b[i]])

13	

0 5 10 15 20 25 30

0
50

10
0

15
0

20
0

c : offset or stride size
Ba

nd
w

id
th

 (G
B/

s)

●

● ● ●
● ● ● ●

● ● ● ● ● ● ● ●

●

●
● ●

●
● ● ● ● ● ●

● ● ● ● ●
●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

Offset : array[i+c]
Stride : array[c*i]

An example of feature vector

14	

"features" : {
 "range": 256,
 "ILs" : {
 "Memory": 9, "Arithmetic": 7, "Math": 0,
 "Branch": 1, "Other": 1 },
 "Array Accesses" : {
 "Coalesced": 3, "Offset": 0, "Stride": 0, "Random": 0},
}

IntStream.range(0, N)
 .parallel()
 .forEach(i -> { a[i] = b[i] + c[i];});

Offline Prediction Model
Construction
q  Obtained 291 samples by running 11 applications with different data sets

§  Additional 41 samples by running additional 3 applications
q  Choice is either GPU or 160 worker threads on CPU

15	

bytecode"
App A	

Prediction
Model

feature 1data 1

bytecode"
App A	data 2

bytecode"
App B	data 3

feature 2

feature 3

ML
Algorithms

feature
extraction	

feature
extraction	

feature
extraction	

Java
Runtime	

Training run with JIT Compiler Offline Model Construction

Platform
q CPU

§  IBM POWER8 @ 3.69GHz
ü 20 cores
ü 8 SMT threads per core = up to 160 threads
ü 256 GB of RAM

q GPU
§  NVIDIA Tesla K40m

ü 12GB of Global Memory

16	

Applications

17	

Application Source Field Max Size Data Type
BlackScholes Finance 4,194,304 double

Crypt JGF Cryptography Size C (N=50M) byte

SpMM JGF Numerical Computing Size C (N=500K) double

MRIQ Parboil Medical Large (64^3) float
Gemm Polybench

Numerical
Computing

2K x 2K int
Gesummv Polybench 2K x 2K int
Doitgen Polybench 256x256x256 int

Jacobi-1D Polybench N=4M, T=1 int
Matrix Multiplication 2K x 2K double

Matrix Transpose 2K x 2K double
VecAdd 4M double

Explored ML Algorithms
q Support Vector Machines (LIBSVM)
q Decision Trees (Weka 3)
q Logistic Regression (Weka 3)
q Multilayer Perceptron (Weka 3)
q k Nearest Neighbors (Weka 3)
q Decision Stumps (Weka 3)
q Naïve Bayes (Weka 3)

18	

Top 3 ML Algorithms 
Full Set of Features (10 Features)

19	

98.28 98.28 97.6099.66 98.97 98.9798.28 98.68 92.68

0

20

40

60

80

100

LIBSVM J48 Tree Logistic Regression

A
cc

ur
ac

y
(%

)

Higher is better
Accuracy from 5-fold CV Accuracy on original training data Accuracy on unknown testing data

Further Explorations and Analyses
by Feature Subsetting
q Research Questions

§  Are the 10 features the best combination?
ü Accuracy
ü Runtime prediction overheads

§ Which features are more important?

20	

Feature Sub-Setting for further analyses:  
10 Algorithms x 1024 Subsets

21	

1. Loop Range (Parallel Loop Size)
2. # of Memory Accesses
3. # of Arithmetic Operations
4. # of Math Methods
5. # of Branch Instructions
6. # of Other Types of Instructions
7. # of Coalesced Memory Accesses
8. # of Offset Memory Accesses
9. # of Stride Memory Accesses
10. # of Other Types of Array Accesses

10 Features
Subset	1	

Subset	2	

Subset	1024	

SVM

Decision
Trees

Logistic
Regression

Multi Layer
Perceptron

kNN

Decision
Stumps

Naïve
Bayes

Accuracy	X%	

Accuracy	Y%	

Accuracy	Z%	

Accuracy	A%	

Accuracy	B%	

Accuracy	C%	

Accuracy	D%	

The impact of Subsetting 
(Fullset vs. the best subset)

22	

99.656 98.625 98.28298.282 97.595 98.282

0

20

40

60

80

100

LIBSVM Logistic Regression J48 Tree

A
cc

ur
ac

y
(%

)

Higher is better
Subset of Features Fullset of features

Feature subsetting can yield better accuracies

The impact of Subsetting 
(Fullset vs. the best subset)

23	

99.66 98.63 98.2899.66 98.97 98.2899.66
82.93

92.68

0
10
20
30
40
50
60
70
80
90

100

LIBSVM (# of features = 3) Logistic Regression (# of features = 4) J48 Tree (# of features = 2)

A
cc

ur
ac

y
(%

)

Higher is better
Accuracy from 5-fold CV Accuracy on original training data Accuracy on unknown testing data

Subsets with only a few features show great accuracies

An example of Subsetting analyses

24	

q With LIBSVM, 99 subsets achieved the highest accuracy
Feature # of Models with this feature Percentage	of	Models	with	this	feature		

range 99 100.0%
stride 96 97.0%

arithmetic 65 65.7%
Other 2 56 56.6%
memory 56 56.6%

offset 55 55.6%
branch 54 54.5%
math 46 46.5%

Other 1 43 43.4%

Runtime Prediction Overheads
LIBSVM Logistic

Regression
J48 Decision

Trees

Full Set (10
features) 2.278 usec 0.158 usec 0.020 usec

Subset 2.107 usec
(3 Features)

0.106 usec
(4 Features)

0.020 usec
(2 Features)

25	

q  Subsetting can reduce prediction overheads
q  However, this part is very small compared to the kernel execution part

§  Based on our analysis, kernels usually take a few milliseconds

Lessons Learned
q ML-based CPU/GPU Selection is a promising

way to choose faster devices
q LIBSVM, Logistic Regression, and J48

Decision Tree are machine learning techniques
that produce models with best accuracies

q Range, coalesced, other types of array
accesses, and arithmetic instructions are
particularly important features

26	

Lessons Learned (Cont’d)
q While LIBSVM (Non-linear classification) shows

excellent accuracy in prediction, runtime prediction
overheads are relatively larger compared to other
algorithms
§  However, those overheads are negligible in general

q J48 Decision Tree shows comparable accuracy to
LIBSVM. Also, the output of the J48 Decision Tree is
more human-readable and fine-tunable

27	

Conclusions
q Conclusions

§  ML-based CPU/GPU Selection is a promising way
to choose faster devices

q Future Work
§  Evaluate End-to-end performance improvements
§  Explore the possibility of applying our technique to

OpenMP, OpenACC, and OpenCL
§  Perform experiments on recent versions of GPUs

28	

Further Readings
q Code Generation and Optimizations

§  “Compiling and Optimizing Java 8 Programs for GPU
Execution.” Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, Vivek
Sarkar. 24th International Conference on Parallel Architectures and
Compilation Techniques (PACT), October 2015.

q  Performance Heuristics (SVM-based)
§  “Machine-Learning-based Performance Heuristics for

Runtime CPU/GPU Selection.” Akihiro Hayashi, Kazuaki Ishizaki,
Gita Koblents, Vivek Sarkar. 12th International Conference on the
Principles and Practice of Programming on the Java Platform:
virtual machines, languages, and tools (PPPJ), September 2015.

29	

Backup Slides

30	

Performance Breakdown

31	

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

BA
SE

+=

LV

+=
D

T
+=

AL
IG

N

AL
L(

+=
R

O
C

)
BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)
BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)
BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)
BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)
BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)
BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)
BA

SE

+=
LV

+=

D
T

+=
AL

IG
N

AL
L(

+=
R

O
C

)

BlackScholes Crypt SpMM Series MRIQ MM Gemm Gesummv

Ex
ec

ut
io

n
Ti

m
e

no
rm

al
iz

ed
 to

 A
LL

Lower is betterH2D D2H Kernel

Precisions and Recalls with cross-validation

32	

Precision
CPU

Recall
CPU

Precision
GPU

Recall
GPU

Range 79.0% 100% 0% 0%

+=nIRs 97.8% 99.1% 96.5% 91.8%

+=dIRs 98.7% 100% 100% 95.0%

+=Arrays 98.7% 100% 100% 95.0%

ALL 96.7% 100% 100% 86.9%

Higher	is	be6er	

All	predic*on	models	except	Range	rarely	make	a	bad	decision		

Java Features on GPUs
q Exceptions

§  Explicit exception checking on GPUs
ü ArrayIndexOutOfBoundsException
ü NullPointerException
ü ArithmeticException (Division by zero only)

§  Further Optimizations
ü Loop Versioning for redundant exception checking elimination on

GPUs based on [Artigas+, ICS’00]
q Virtual Method Calls

§  Direct De-virtualization or Guarded De-virtualization "
[Ishizaki+, OOPSLA’00]

33	

Challenge 1 : Supporting Java Features on GPUs

Loop Versioning Example

34	

IntStream.range(0, N)  
.parallel()  
.forEach( 
 i -> {
 Array[i] = i / N;  
 }  
);

// Speculative Checking on CPU
if (Array != null
 && 0 <= Array.length
 && N <= Array.length
 && N != 0) {
 // Safe GPU Execution
} else {

May cause
OutOfBoundsException

May cause
ArithmeticException

May cause
NullPointerException

Challenge 1 : Supporting Java Features on GPUs

Optimizing GPU Execution
q Kernel optimization

§ Optimizing alignment of Java arrays on GPUs
§  Utilizing “Read-Only Cache” in recent GPUs

q Data transfer optimizations
§  Redundant data transfer elimination
§  Partial transfer if an array subscript is affine

35	

Challenge 2 : Accelerating Java programs on GPUs

The Alignment Optimization Example

36	

0 128

a[0]-a[31]

Object header

Memory address

a[32]-a[63]
Naive"
alignment"
strategy

a[0]-a[31] a[32]-a[63]

256 384

Our"
alignment"
strategy

One memory transaction for a[0:31]

Two memory transactions for a[0:31]

a[64]-a[95]

a[64]-a[95]

Challenge 2 : Accelerating Java programs on GPUs

Performance Evaluations

37	

40.6 37.4
82.0

64.2 27.6

1.4 1.0
4.4

36.7
7.4 5.7

42.7 34.6 58.1

844.7 772.3

1.0

0.1

1.9

1164.8

9.0
1.2

0.0

0.1

1.0

10.0

100.0

1000.0

10000.0

Sp
ee

du
p

re
la

tiv
e

to
 S

EQ
EN

TI
AL

Ja

va
 (l

og
 s

ca
le

)

Higher is better160 worker threads (Fork/join) GPU

CPU: IBM POWER8 @ 3.69GHz , GPU: NVIDIA Tesla K40m

Challenge 2 : Accelerating Java programs on GPUs

How to evaluate prediction models: 
5-fold cross validation
q  Overfitting problem:

§  Prediction model may be tailored to the eleven applications "
if training data = testing data

q  To avoid the overfitting problem:
§  Calculate the accuracy of the prediction model using 5-fold cross

validation

38	

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5

Subset 2Subset 1 Subset 3 Subset 4 Subset 5
Build a prediction model trained on Subset 2-5Used for TESTING

Accuracy : X%

Used for TESTING
Accuracy : Y%

TRAINING DATA (291 samples)

Build a prediction model trained  
on Subset 1, 3-5

