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Java For HPC?


Dual Socket Intel Xeon E5-2666 v3,  18cores, 2.9GHz, 60-GiB DRAM
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4K x 4K Matrix Multiply
 GFLOPS
 Absolute speedup

Python
 0.005
 1

Java
 0.058
 11


C
 0.253
 47

Parallel loops
 1.969
 366


Parallel divide and conquer
 36.168
 6,724

+ vectorization
 124.945
 23,230

+ AVX intrinsics
 335.217
 62,323


Strassen
 361.681
 67,243


Credits : Charles Leiserson, Ken Kennedy Award Lecture @ Rice University, Karthik Murthy @ PACT2015


Any ways to 
accelerate 

Java 
programs?



Java 8 Parallel Streams APIs

q Explicit Parallelism with lambda expressions


IntStream.range(0, N)
         .parallel()
         .forEach(i ->       
                  <lambda>);
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Explicit Parallelism with Java

q High-level parallel programming with Java"

offers opportunities for 

§  preserving portability


ü Low-level parallel/accelerator programming is not required

§  enabling compiler to perform parallel-aware "

optimizations and code generation


Java 8 Parallel Stream API

Multi-
core


CPUs


Many-
core


GPUs

FPGAs


Java 8 Programs


HW


SW
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Challenges for  
GPU Code Generation
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IntStream.range(0, N).parallel().forEach(i -> <lambda>);

Challenge 1

Supporting Java 

Features on GPUs


Challenge 3

CPU / GPU

Selection


Challenge 2

Accelerating Java 

programs on GPUs


ü  Exception Semantics

ü  Virtual Method Calls


ü  Kernel Optimizations

ü  DT Optimizations


ü  Selection of a faster device  
from CPUs and GPUs


Standard	Java	API	Call	for	Parallelism	

Credits : Checklist by Phil Laver from the Noun Project, Rocket by Luis Prado from the Noun Project

Rocket by Maxwell Painter Karpylev from the Noun Project, Running by Dillon Arloff from the Noun Project


vs.	



Related Work: Java + GPU
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Lang
 JIT
 GPU Kernel
 Device Selection

JCUDA
 Java
 -
 CUDA
 GPU only


Lime
 Lime
 ✔
 Override map/reduce
 Static

Firepile
 Scala
 ✔
 reduce
 Static

JaBEE
 Java
 ✔
 Override run
 GPU only


Aparapi
 Java
 ✔
 map
 Static

Hadoop-CL
 Java
 ✔
 Override map/reduce
 Static

RootBeer
 Java
 ✔
 Override run
 Not Described


HJ-OpenCL
 HJ
 -
 forall / lambda
 Static

PPPJ09 (auto)
 Java
 ✔
 For-loop
 Dynamic with Regression


Our Work
 Java
 ✔
 Parallel Stream
 Dynamic with Machine Learning


None of these approaches considers Java 8 Parallel Stream APIs  
and a dynamic device selection with machine-learning 



JIT Compilation for GPU

q IBM Java 8 Compiler


§  Built on top of the production version of the "
IBM Java 8 runtime environment (J9 VM)
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Multi-
core


CPUs


Many-
core


GPUs


method A


method A


method A


method A


Interpretation on

JVM


1st invocation


2nd invocation


Nth invocation

(N+1)th invocation


Native Code

Generation for


Multi-
core


CPUs




The JIT Compilation Flow
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Java

Bytecode


Translation to

Our IR


Parallel Streams

Identification


Optimization

for GPUs


NVVM IR
 libNVVM


Existing 

Optimizations


Target Machine

Code Generation


GPU

Binary


CPU

Binary



GPU Runtime


Our JIT Compiler


NVIDIA’s Tool Chain




Performance Evaluations
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Higher is better
160 worker threads (Fork/join)
 GPU


CPU: IBM POWER8 @ 3.69GHz , GPU: NVIDIA Tesla K40m




Runtime CPU/GPU Selection 
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Multi-
core


CPUs


Many-
core


GPUs


method A


method A

Nth invocation


(N+1)th invocation

Native Code

Generation for


(Open Question)

Which one is faster?




Our approach: 
ML-based Performance Heuristics


q A binary prediction model is constructed by supervised 
machine learning techniques
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bytecode"
App A	

Prediction

Model


JIT compiler	
feature 1
data 1


bytecode"
App A	data 2


bytecode"
App B	data 3


feature 2


feature 3


ML


Training run with JIT Compiler
 Offline Model Construction


feature

extraction	

feature

extraction	

feature

extraction	

Java

Runtime	

CPU
GPU




Features of program

q Loop Range (Parallel Loop Size)

q The dynamic number of Instructions in IR 


§  Memory Access

§  Arithmetic Operations

§  Math Methods

§  Branch Instructions

§  Other Types of Instructions
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Features of program (Cont’d)

q The dynamic number of Array Accesses


§ Coalesced Access (a[i])

§ Offset Access (a[i+c])

§  Stride Access (a[c*i])

§ Other Access (a[b[i]])
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An example of feature vector
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"features" : {
  "range": 256, 
  "ILs" : {
    "Memory": 9, "Arithmetic": 7, "Math": 0, 
    "Branch": 1, "Other": 1 }, 
  "Array Accesses" : {
    "Coalesced": 3, "Offset": 0, "Stride": 0, "Random": 0}, 
}

IntStream.range(0, N)
         .parallel()
         .forEach(i -> { a[i] = b[i] + c[i];});



Offline Prediction Model 
Construction

q  Obtained 291 samples by running 11 applications with different data sets


§  Additional 41 samples by running additional 3 applications

q  Choice is either GPU or 160 worker threads on CPU
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bytecode"
App A	

Prediction

Model


feature 1
data 1


bytecode"
App A	data 2


bytecode"
App B	data 3


feature 2


feature 3


ML 
Algorithms


feature

extraction	

feature

extraction	

feature

extraction	

Java

Runtime	

Training run with JIT Compiler
 Offline Model Construction




Platform

q CPU


§  IBM POWER8 @ 3.69GHz

ü 20 cores

ü 8 SMT threads per core = up to 160 threads

ü 256 GB of RAM


q GPU

§  NVIDIA Tesla K40m


ü 12GB of Global Memory
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Applications
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Application
 Source
 Field
 Max Size
 Data Type

BlackScholes
 Finance
 4,194,304
 double


Crypt
 JGF
 Cryptography
 Size C (N=50M)
 byte


SpMM
 JGF
 Numerical Computing
 Size C (N=500K)
 double


MRIQ
 Parboil
 Medical
 Large (64^3)
 float 

Gemm
 Polybench


Numerical

Computing


2K x 2K
 int

Gesummv
 Polybench
 2K x 2K
 int

Doitgen
 Polybench
 256x256x256
 int


Jacobi-1D
 Polybench
 N=4M, T=1
 int

Matrix Multiplication
 2K x 2K
 double


Matrix Transpose
 2K x 2K
 double

VecAdd
 4M
 double




Explored ML Algorithms

q Support Vector Machines (LIBSVM)

q Decision Trees (Weka 3)

q Logistic Regression (Weka 3)

q Multilayer Perceptron (Weka 3)

q k Nearest Neighbors (Weka 3)

q Decision  Stumps (Weka 3)

q Naïve Bayes (Weka 3)


18	



Top 3 ML Algorithms 
Full Set of Features (10 Features)
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Further Explorations and Analyses 
by Feature Subsetting

q Research Questions


§  Are the 10 features the best combination?

ü Accuracy

ü Runtime prediction overheads


§ Which features are more important?
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Feature Sub-Setting for further analyses:  
10 Algorithms x 1024 Subsets 
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1. Loop Range (Parallel Loop Size)
2. # of Memory Accesses
3. # of Arithmetic Operations
4. # of Math Methods
5. # of Branch Instructions
6. # of Other Types of Instructions
7. # of Coalesced Memory Accesses
8. # of Offset Memory  Accesses
9. # of Stride Memory Accesses
10. # of Other Types of Array Accesses

10 Features
Subset	1	

Subset	2	

Subset	1024	

SVM


Decision 
Trees


Logistic 
Regression


Multi Layer 
Perceptron


kNN


Decision 
Stumps


Naïve

Bayes


Accuracy	X%	

Accuracy	Y%	

Accuracy	Z%	

Accuracy	A%	

Accuracy	B%	

Accuracy	C%	

Accuracy	D%	



The impact of Subsetting 
(Fullset vs. the best subset) 
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Feature subsetting can yield better accuracies



The impact of Subsetting 
(Fullset vs. the best subset) 
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82.93
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Accuracy from 5-fold CV Accuracy on original training data Accuracy on unknown testing data

Subsets with only a few features show great accuracies



An example of Subsetting analyses
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q With LIBSVM, 99 subsets achieved the highest accuracy

Feature # of Models with this feature Percentage	of	Models	with	this	feature		

range 99 100.0%
stride 96 97.0%

arithmetic 65 65.7%
Other 2 56 56.6%
memory 56 56.6%

offset 55 55.6%
branch 54 54.5%
math 46 46.5%

Other 1 43 43.4%



Runtime Prediction Overheads

LIBSVM Logistic 

Regression
J48 Decision

Trees

Full Set (10 
features) 2.278 usec 0.158 usec 0.020 usec

Subset 2.107 usec
(3 Features)

0.106 usec
(4 Features)

0.020 usec
(2 Features)
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q  Subsetting can reduce prediction overheads

q  However, this part is very small compared to the kernel execution part


§  Based on our analysis, kernels usually take a few milliseconds




Lessons Learned 

q ML-based CPU/GPU Selection is a promising 

way to choose faster devices

q LIBSVM, Logistic Regression, and J48 

Decision Tree are machine learning techniques 
that produce models with best accuracies


q Range, coalesced, other types of array 
accesses, and arithmetic instructions are 
particularly important features


26	



Lessons Learned (Cont’d)

q While LIBSVM (Non-linear classification) shows 

excellent accuracy in prediction, runtime prediction 
overheads are relatively larger compared to other 
algorithms

§  However, those overheads are negligible in general


q J48 Decision Tree shows comparable accuracy to 
LIBSVM. Also, the output of the J48 Decision Tree is 
more human-readable and fine-tunable
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Conclusions

q Conclusions


§  ML-based CPU/GPU Selection is a promising way 
to choose faster devices


q Future Work

§  Evaluate End-to-end performance improvements

§  Explore the possibility of applying our technique to 

OpenMP, OpenACC, and OpenCL

§  Perform experiments on recent versions of GPUs
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Further Readings

q Code Generation and Optimizations


§  “Compiling and Optimizing Java 8 Programs for GPU 
Execution.” Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, Vivek 
Sarkar. 24th International Conference on Parallel Architectures and 
Compilation Techniques (PACT), October 2015.


q  Performance Heuristics (SVM-based)

§  “Machine-Learning-based Performance Heuristics for 

Runtime CPU/GPU Selection.” Akihiro Hayashi, Kazuaki Ishizaki, 
Gita Koblents, Vivek Sarkar. 12th International Conference on the 
Principles and Practice of Programming on the Java Platform: 
virtual machines, languages, and tools (PPPJ), September 2015.
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Backup Slides
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Performance Breakdown
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Precisions and Recalls with cross-validation
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Precision

CPU


Recall

CPU


Precision

GPU


Recall

GPU


Range
 79.0%
 100%
 0%
 0%


+=nIRs
 97.8%
 99.1%
 96.5%
 91.8%


+=dIRs
 98.7%
 100%
 100%
 95.0%


+=Arrays
 98.7%
 100%
 100%
 95.0%


ALL
 96.7%
 100%
 100%
 86.9%


Higher	is	be6er	

All	predic*on	models	except	Range	rarely	make	a	bad	decision		



Java Features on GPUs

q Exceptions


§  Explicit exception checking on GPUs

ü ArrayIndexOutOfBoundsException
ü NullPointerException 
ü ArithmeticException (Division by zero only)


§  Further Optimizations

ü Loop Versioning for redundant exception checking elimination on 

GPUs based on [Artigas+, ICS’00]

q Virtual Method Calls


§  Direct De-virtualization or Guarded De-virtualization "
[Ishizaki+, OOPSLA’00]
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Challenge 1 : Supporting Java Features on GPUs




Loop Versioning Example
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IntStream.range(0, N)  
.parallel()  
.forEach(  
    i -> {
        Array[i] = i / N;  
    }  
);

// Speculative Checking on CPU

if (Array != null
    && 0 <= Array.length
    && N <= Array.length        
    && N != 0) {
    // Safe GPU Execution

} else {

May cause

OutOfBoundsException

May cause

ArithmeticException

May cause

NullPointerException

Challenge 1 : Supporting Java Features on GPUs




Optimizing GPU Execution

q Kernel optimization


§ Optimizing alignment of Java arrays on GPUs

§  Utilizing “Read-Only Cache” in recent GPUs


q Data transfer optimizations

§  Redundant data transfer elimination

§  Partial transfer if an array subscript is affine
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Challenge 2 : Accelerating Java programs on GPUs




The Alignment Optimization Example
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0
 128


a[0]-a[31]


Object header


Memory address


a[32]-a[63]

Naive"
alignment"
strategy


a[0]-a[31]
 a[32]-a[63]


256
 384


Our"
alignment"
strategy


One memory transaction for a[0:31]


Two memory transactions for a[0:31]


a[64]-a[95]


a[64]-a[95]


Challenge 2 : Accelerating Java programs on GPUs




Performance Evaluations
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Higher is better
160 worker threads (Fork/join)
 GPU


CPU: IBM POWER8 @ 3.69GHz , GPU: NVIDIA Tesla K40m


Challenge 2 : Accelerating Java programs on GPUs




How to evaluate prediction models: 
5-fold cross validation

q  Overfitting problem:


§  Prediction model may be tailored to the eleven applications "
if training data = testing data 


q  To avoid the overfitting problem:

§  Calculate the accuracy of the prediction model using 5-fold cross 

validation
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Subset 1
 Subset 2
 Subset 3
 Subset 4
 Subset 5


Subset 2
Subset 1
 Subset 3
 Subset 4
 Subset 5

Build a prediction model trained on Subset 2-5
Used for TESTING


Accuracy : X%


Used for TESTING

Accuracy : Y%


TRAINING DATA (291 samples)


Build a prediction model trained  
on Subset 1, 3-5



