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Java For HPC?

Dual Socket Intel Xeon E5-2666 v3,  18cores, 2.9GHz, 60-GiB DRAM
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4K x 4K Matrix Multiply GFLOPS Absolute speedup
Python 0.005 1
Java 0.058 11

C 0.253 47
Parallel loops 1.969 366

Parallel divide and conquer 36.168 6,724
+ vectorization 124.945 23,230
+ AVX intrinsics 335.217 62,323

Strassen 361.681 67,243

Credits : Charles Leiserson, Ken Kennedy Award Lecture @ Rice University, Karthik Murthy @ PACT2015

Any ways to 
accelerate 

Java 
programs?



Java 8 Parallel Streams APIs
q Explicit Parallelism with lambda expressions

IntStream.range(0, N)
         .parallel()
         .forEach(i ->       
                  <lambda>);
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Explicit Parallelism with Java
q High-level parallel programming with Java"

offers opportunities for 
§  preserving portability

ü Low-level parallel/accelerator programming is not required
§  enabling compiler to perform parallel-aware "

optimizations and code generation

Java 8 Parallel Stream API
Multi-
core

CPUs

Many-
core

GPUs
FPGAs

Java 8 Programs

HW

SW
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Challenges for  
GPU Code Generation
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IntStream.range(0, N).parallel().forEach(i -> <lambda>);

Challenge 1
Supporting Java 

Features on GPUs

Challenge 3
CPU / GPU
Selection

Challenge 2
Accelerating Java 
programs on GPUs

ü  Exception Semantics
ü  Virtual Method Calls

ü  Kernel Optimizations
ü  DT Optimizations

ü  Selection of a faster device  
from CPUs and GPUs

Standard	Java	API	Call	for	Parallelism	

Credits : Checklist by Phil Laver from the Noun Project, Rocket by Luis Prado from the Noun Project
Rocket by Maxwell Painter Karpylev from the Noun Project, Running by Dillon Arloff from the Noun Project

vs.	



Related Work: Java + GPU
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Lang JIT GPU Kernel Device Selection
JCUDA Java - CUDA GPU only

Lime Lime ✔ Override map/reduce Static
Firepile Scala ✔ reduce Static
JaBEE Java ✔ Override run GPU only

Aparapi Java ✔ map Static
Hadoop-CL Java ✔ Override map/reduce Static
RootBeer Java ✔ Override run Not Described

HJ-OpenCL HJ - forall / lambda Static
PPPJ09 (auto) Java ✔ For-loop Dynamic with Regression

Our Work Java ✔ Parallel Stream Dynamic with Machine Learning

None of these approaches considers Java 8 Parallel Stream APIs  
and a dynamic device selection with machine-learning 



JIT Compilation for GPU
q IBM Java 8 Compiler

§  Built on top of the production version of the "
IBM Java 8 runtime environment (J9 VM)
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Multi-
core

CPUs

Many-
core

GPUs

method A

method A

method A

method A

Interpretation on
JVM

1st invocation

2nd invocation

Nth invocation
(N+1)th invocation

Native Code
Generation for

Multi-
core

CPUs



The JIT Compilation Flow
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Java
Bytecode

Translation to
Our IR

Parallel Streams
Identification

Optimization
for GPUs

NVVM IR libNVVM

Existing 
Optimizations

Target Machine
Code Generation

GPU
Binary

CPU
Binary

GPU Runtime

Our JIT Compiler

NVIDIA’s Tool Chain



Performance Evaluations
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CPU: IBM POWER8 @ 3.69GHz , GPU: NVIDIA Tesla K40m



Runtime CPU/GPU Selection 
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Multi-
core

CPUs

Many-
core

GPUs

method A

method A
Nth invocation

(N+1)th invocation
Native Code
Generation for

(Open Question)
Which one is faster?



Our approach: 
ML-based Performance Heuristics

q A binary prediction model is constructed by supervised 
machine learning techniques
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bytecode"
App A	

Prediction
Model

JIT compiler	
feature 1data 1

bytecode"
App A	data 2

bytecode"
App B	data 3

feature 2

feature 3

ML

Training run with JIT Compiler Offline Model Construction

feature
extraction	

feature
extraction	

feature
extraction	

Java
Runtime	

CPUGPU



Features of program
q Loop Range (Parallel Loop Size)
q The dynamic number of Instructions in IR 

§  Memory Access
§  Arithmetic Operations
§  Math Methods
§  Branch Instructions
§  Other Types of Instructions
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Features of program (Cont’d)
q The dynamic number of Array Accesses

§ Coalesced Access (a[i])
§ Offset Access (a[i+c])
§  Stride Access (a[c*i])
§ Other Access (a[b[i]])
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An example of feature vector
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"features" : {
  "range": 256, 
  "ILs" : {
    "Memory": 9, "Arithmetic": 7, "Math": 0, 
    "Branch": 1, "Other": 1 }, 
  "Array Accesses" : {
    "Coalesced": 3, "Offset": 0, "Stride": 0, "Random": 0}, 
}

IntStream.range(0, N)
         .parallel()
         .forEach(i -> { a[i] = b[i] + c[i];});



Offline Prediction Model 
Construction
q  Obtained 291 samples by running 11 applications with different data sets

§  Additional 41 samples by running additional 3 applications
q  Choice is either GPU or 160 worker threads on CPU
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bytecode"
App A	

Prediction
Model

feature 1data 1

bytecode"
App A	data 2

bytecode"
App B	data 3

feature 2

feature 3

ML 
Algorithms

feature
extraction	

feature
extraction	

feature
extraction	

Java
Runtime	

Training run with JIT Compiler Offline Model Construction



Platform
q CPU

§  IBM POWER8 @ 3.69GHz
ü 20 cores
ü 8 SMT threads per core = up to 160 threads
ü 256 GB of RAM

q GPU
§  NVIDIA Tesla K40m

ü 12GB of Global Memory
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Applications
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Application Source Field Max Size Data Type
BlackScholes Finance 4,194,304 double

Crypt JGF Cryptography Size C (N=50M) byte

SpMM JGF Numerical Computing Size C (N=500K) double

MRIQ Parboil Medical Large (64^3) float 
Gemm Polybench

Numerical
Computing

2K x 2K int
Gesummv Polybench 2K x 2K int
Doitgen Polybench 256x256x256 int

Jacobi-1D Polybench N=4M, T=1 int
Matrix Multiplication 2K x 2K double

Matrix Transpose 2K x 2K double
VecAdd 4M double



Explored ML Algorithms
q Support Vector Machines (LIBSVM)
q Decision Trees (Weka 3)
q Logistic Regression (Weka 3)
q Multilayer Perceptron (Weka 3)
q k Nearest Neighbors (Weka 3)
q Decision  Stumps (Weka 3)
q Naïve Bayes (Weka 3)
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Top 3 ML Algorithms 
Full Set of Features (10 Features)
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Further Explorations and Analyses 
by Feature Subsetting
q Research Questions

§  Are the 10 features the best combination?
ü Accuracy
ü Runtime prediction overheads

§ Which features are more important?
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Feature Sub-Setting for further analyses:  
10 Algorithms x 1024 Subsets 
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1. Loop Range (Parallel Loop Size)
2. # of Memory Accesses
3. # of Arithmetic Operations
4. # of Math Methods
5. # of Branch Instructions
6. # of Other Types of Instructions
7. # of Coalesced Memory Accesses
8. # of Offset Memory  Accesses
9. # of Stride Memory Accesses
10. # of Other Types of Array Accesses

10 Features
Subset	1	

Subset	2	

Subset	1024	

SVM

Decision 
Trees

Logistic 
Regression

Multi Layer 
Perceptron

kNN

Decision 
Stumps

Naïve
Bayes

Accuracy	X%	

Accuracy	Y%	

Accuracy	Z%	

Accuracy	A%	

Accuracy	B%	

Accuracy	C%	

Accuracy	D%	



The impact of Subsetting 
(Fullset vs. the best subset) 
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The impact of Subsetting 
(Fullset vs. the best subset) 
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An example of Subsetting analyses
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q With LIBSVM, 99 subsets achieved the highest accuracy
Feature # of Models with this feature Percentage	of	Models	with	this	feature		

range 99 100.0%
stride 96 97.0%

arithmetic 65 65.7%
Other 2 56 56.6%
memory 56 56.6%

offset 55 55.6%
branch 54 54.5%
math 46 46.5%

Other 1 43 43.4%



Runtime Prediction Overheads
LIBSVM Logistic 

Regression
J48 Decision

Trees

Full Set (10 
features) 2.278 usec 0.158 usec 0.020 usec

Subset 2.107 usec
(3 Features)

0.106 usec
(4 Features)

0.020 usec
(2 Features)
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q  Subsetting can reduce prediction overheads
q  However, this part is very small compared to the kernel execution part

§  Based on our analysis, kernels usually take a few milliseconds



Lessons Learned 
q ML-based CPU/GPU Selection is a promising 

way to choose faster devices
q LIBSVM, Logistic Regression, and J48 

Decision Tree are machine learning techniques 
that produce models with best accuracies

q Range, coalesced, other types of array 
accesses, and arithmetic instructions are 
particularly important features
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Lessons Learned (Cont’d)
q While LIBSVM (Non-linear classification) shows 

excellent accuracy in prediction, runtime prediction 
overheads are relatively larger compared to other 
algorithms
§  However, those overheads are negligible in general

q J48 Decision Tree shows comparable accuracy to 
LIBSVM. Also, the output of the J48 Decision Tree is 
more human-readable and fine-tunable
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Conclusions
q Conclusions

§  ML-based CPU/GPU Selection is a promising way 
to choose faster devices

q Future Work
§  Evaluate End-to-end performance improvements
§  Explore the possibility of applying our technique to 

OpenMP, OpenACC, and OpenCL
§  Perform experiments on recent versions of GPUs
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Further Readings
q Code Generation and Optimizations

§  “Compiling and Optimizing Java 8 Programs for GPU 
Execution.” Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, Vivek 
Sarkar. 24th International Conference on Parallel Architectures and 
Compilation Techniques (PACT), October 2015.

q  Performance Heuristics (SVM-based)
§  “Machine-Learning-based Performance Heuristics for 

Runtime CPU/GPU Selection.” Akihiro Hayashi, Kazuaki Ishizaki, 
Gita Koblents, Vivek Sarkar. 12th International Conference on the 
Principles and Practice of Programming on the Java Platform: 
virtual machines, languages, and tools (PPPJ), September 2015.
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Backup Slides
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Performance Breakdown
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Precisions and Recalls with cross-validation
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Precision
CPU

Recall
CPU

Precision
GPU

Recall
GPU

Range 79.0% 100% 0% 0%

+=nIRs 97.8% 99.1% 96.5% 91.8%

+=dIRs 98.7% 100% 100% 95.0%

+=Arrays 98.7% 100% 100% 95.0%

ALL 96.7% 100% 100% 86.9%

Higher	is	be6er	

All	predic*on	models	except	Range	rarely	make	a	bad	decision		



Java Features on GPUs
q Exceptions

§  Explicit exception checking on GPUs
ü ArrayIndexOutOfBoundsException
ü NullPointerException 
ü ArithmeticException (Division by zero only)

§  Further Optimizations
ü Loop Versioning for redundant exception checking elimination on 

GPUs based on [Artigas+, ICS’00]
q Virtual Method Calls

§  Direct De-virtualization or Guarded De-virtualization "
[Ishizaki+, OOPSLA’00]
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Challenge 1 : Supporting Java Features on GPUs



Loop Versioning Example
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IntStream.range(0, N)  
.parallel()  
.forEach(  
    i -> {
        Array[i] = i / N;  
    }  
);

// Speculative Checking on CPU
if (Array != null
    && 0 <= Array.length
    && N <= Array.length        
    && N != 0) {
    // Safe GPU Execution
} else {

May cause
OutOfBoundsException

May cause
ArithmeticException

May cause
NullPointerException

Challenge 1 : Supporting Java Features on GPUs



Optimizing GPU Execution
q Kernel optimization

§ Optimizing alignment of Java arrays on GPUs
§  Utilizing “Read-Only Cache” in recent GPUs

q Data transfer optimizations
§  Redundant data transfer elimination
§  Partial transfer if an array subscript is affine
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Challenge 2 : Accelerating Java programs on GPUs



The Alignment Optimization Example
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0 128

a[0]-a[31]

Object header

Memory address

a[32]-a[63]
Naive"
alignment"
strategy

a[0]-a[31] a[32]-a[63]

256 384

Our"
alignment"
strategy

One memory transaction for a[0:31]

Two memory transactions for a[0:31]

a[64]-a[95]

a[64]-a[95]

Challenge 2 : Accelerating Java programs on GPUs



Performance Evaluations
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How to evaluate prediction models: 
5-fold cross validation
q  Overfitting problem:

§  Prediction model may be tailored to the eleven applications "
if training data = testing data 

q  To avoid the overfitting problem:
§  Calculate the accuracy of the prediction model using 5-fold cross 

validation
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Subset 1 Subset 2 Subset 3 Subset 4 Subset 5

Subset 2Subset 1 Subset 3 Subset 4 Subset 5
Build a prediction model trained on Subset 2-5Used for TESTING

Accuracy : X%

Used for TESTING
Accuracy : Y%

TRAINING DATA (291 samples)

Build a prediction model trained  
on Subset 1, 3-5


