
An Example of Porting PETSc Applications
to Heterogeneous Platforms with OpenACC

Pi-Yueh Chuang
The George Washington University

Fernanda S. Foertter
Oak Ridge National Laboratory

Goal

● Develop an OpenACC example for Titan user

○ Step-by-step

○ A more realistic example of MPI + OpenACC

● Provide a reference to non-Titan users

○ How to accelerate PETSc applications in an easy way

○ Exploit the full power of heterogeneous platforms

2

Background: PETSc

● PETSc -- Portable, Extensible Toolkit for Scientific Computation

○ Argonne National Laboratory

○ MPI or MPI+CUDA/OpenCL/OpenMP

○ Dense/sparse linear algebra

● Large-scale parallel scientific programs in an easy way

○ Strong programming skills (x)

○ HPC knowledge (x)

○ Deriving a linear system Ax=b from physic problem (o)
3

In main():

1. User-defined functions

○ Prepare a linear system (Ax=b).

2. PETSc function -- KSPSetup()

○ PETSc sets up the solver.

3. PETSc function -- KSPSolve()

○ PETSc solves the linear system.

Background: PETSc -- typical use case

4

Why this example matters

● Accelerating PETSc applications with GPUs

○ Accelerating user-defined portion (x)

○ Accelerating PETSc library itself (o)
■ A black box

■ Complicated source code

● The GPU-version of PETSc (MPI+CUDA/OpenCL)

○ Only exists in develop branch, not in official release -- unstable

○ Never worked on Titan at the time of this project

5

Problem and solver settings in this example

● 3D Poisson problem

○
○ Unknowns: 27M

○ A performance bottleneck in computational fluid dynamics

● Linear solver settings

○ Conjugate-gradient method

○ Non-smoothed aggregation algebraic multigrid preconditioner
■ V cycle

■ Smoother: block Jacobi + local Jacobi
6

Standard workflow

1). Profiling with Score-P

2). Identifying the most expensive kernels

3). Inserting basic OpenACC directives

4). Profiling NVProf to show data transfer latency

5). Tuning/modifying the program to hide more latency

6). Repeating 4) and 5) until satisfactory

7

All profilings are done with a single computing node.

(16 CPU cores for CPU kernel; 16 CPU core + 1 K20x GPU for OpenaCC kernels.)

ScoreP profiling -- KSPSolve scope

MatMult_SeqAIJ
51%

8

● Basically a sequential SpMVM (sparse matrix-vector multiplication)

MatMult_SeqAIJ

49 for (i=0; i<m; i++) {
50 n = ii[i+1] - ii[i];
51 aj = a->j + ii[i];
52 aa = a->a + ii[i];
53 sum = 0.0;
54 PetscSparseDensePlusDot(sum,x,aa,aj,n);
55 y[i] = sum;
56 }

for (_i=0; _i<n; _i++) sum += aa[_i] * x[aj[_i]];

a macro

9

MatMult_SeqAIJ -- OpenACC strategy

● Outer loop ➞ threads/vectors; inner loop ➞ sequential

○ Heavier tasks per thread, if n is not small enough

○ Maximize the utilization of a GPU if m is large enough

10

For our Poisson matrix:

● m <= 27M / # of MPI processes
● n <= 7

For other matrices automatically
created by PETSc for multigrid
preconditioners, we can only guess.

Steps toward final OpenACC kernels

Step 1. inserting basic OpenACC directives

Step 2. uploading required data to GPU only once

Step 3. hiding latency with concurrent GPU/CPU executions

Step 4. hiding more latency with a block algorithm

11

Steps toward final OpenACC kernels: Step 1

pragma acc kernels loop independent gang vector(32) \
 copyin(ii[:m+1] , cols[:a->nz], data[:a->nz], x[:xSize]) \
 copyout(y[:m])
for (i=0; i<m; i++) {
 n = ii[i+1] - ii[i];
 aj = a->j cols + ii[i];
 aa = a->a data + ii[i];
 sum = 0.0;
 # pragma acc loop seq reduction(+:sum)
 PetscSparseDensePlusDot(sum,x,aa,aj,n);
 y[i] = sum;
}

● MatMult_SeqAIJ: 2 new lines of directives ➡ 0.4x speedup

12

Steps toward final OpenACC kernels: Step 1
MemCpy

H ➡ D

Kernel
execution

} one MPI process
⇓

one CUDA stream.

13

Steps toward final OpenACC kernels: Step 2

● Upload required data to GPU only once

○ For multigrid preconditioners, we don’t know and can’t control what are

passed to MatMult_SeqAIJ.

● Let PETSc controls what to upload to and keep on GPU.

○ Allocating and uploading only when necessary

○ Data will be changed on host ➞ GPU counterpart will, too

○ Data on host will be destroyed ➞ GPU counterpart will, too.

14

● MatMult_SeqAIJ

○ only data passed into this function should be uploaded

Steps toward final OpenACC kernels: Step 2

pragma acc enter data copyin(\
 ii[:m+1], cols[:a->nz], data[:a->nz], x[:xSize])

pragma acc kernels loop independent gang vector(32) \
 present(ii[:m+1], cols[:a->nz], data[:a->nz], x[:xSize]) \
 copyout(y[:m])
for(…) { … }

pragma acc exit data delete(x[:xSize])

15

Steps toward final OpenACC kernels: Step 2

● MatAssemblyEnd_SeqAIJ

○ the final function called by PETSc when anything in a matrix changed

present[0] = acc_is_present(ai, <size>);
present[1] = acc_is_present(aj, <size>);
present[2] = acc_is_present(aa, <size>);

pragma acc exit data delete(aj[:<length>]) if(present[1])
pragma acc exit data delete(aa[:<length>]) if(present[2])

/* Original MatAssemblyEnd_SeqAIJ code */

pragma acc update device(ai[:<length>]) if(present[0])
pragma acc enter data copyin(aj[:<length>]) if(present[1])
pragma acc enter data copyin(aa[:<length>]) if(present[2])

16

Steps toward final OpenACC kernels: Step 2

● MatDestroy_SeqAIJ

○ the final function called by PETSc when destroying a matrix

present[0] = acc_is_present(ai, <size>);
present[1] = acc_is_present(aj, <size>);
present[2] = acc_is_present(aa, <size>);

pragma acc exit data delete(ai[:<length>]) if(present[0])
pragma acc exit data delete(aj[:<length>]) if(present[1])
pragma acc exit data delete(aa[:<length>]) if(present[2])

/* Original MatDestroy_SeqAIJ code */

17

Steps toward final OpenACC kernels: Step 2

MemCpy H ➡ D

Kernel execution

MemCpy D ➡ H

}
Concurrent MPI

processes (1
process = 1

CUDA stream)
}

● Result: 17 new lines of code ➡ 1.34x speedup

18

Steps toward final OpenACC kernels: Step 3

● MatMult_SeqAIJ

○ Overlapping CPU/GPU tasks

○ Result: 25 additional new lines ➡ 1.34x speedup

pragma acc enter data copyin(…) async

PetscInt offset = 0;
while((! acc_async_test_all()) && (offset < m)) { …; offset++; }

pragma acc kernels … copyout(y[offset:remain])
for (i=offset; i<m; i++) { … }

pragma acc exit data delete(…) async
19

Steps toward final OpenACC kernels: Step 4

● MatMult_SeqAIJ

○ Block algorithm & increase concurrency

/* the same as in previous step (pragma acc & while loop). */

for(PetscInt b=0; b<bN; b++) {
 # pragma acc … copyout(y[offset:bSize]) async(b+1)
 for (i=offset; i<(offset+bSize); i++) { … }
 offset += bSize;
}

/* handle remaining rows */

pragma acc wait
pragma acc exit data …

20

Steps toward final OpenACC kernels: Step 4

● Result: 35 new lines of code ➡ 1.34x

} Now we have more
than one streams on
each MPI process.

No obvious benefit.

21

Speedups and strong scaling -- single node

22

Speedups and strong scaling -- multiple nodes

23

User experience and Conclusion

● The experience matches our expectation

○ lite code modification ➡ “not outstanding but acceptable” speedup.

● For a well design legacy MPI code

○ Users should be able to identify the bottleneck sequential kernel.

Applying OpenACC to such a code won’t involve MPI issues.

○ Block algorithms may not be necessary, especially when many

processes sharing one single GPU.

24

User experience and Conclusion

● Beginners’ impression about OpenACC may cause wrong estimation

on coding effort required.

○ Lite coding effort and no need of HPC experience may not be true

● For example, if using local SOR, instead of local Jacobi, as our local

smoother, the bottleneck kernel function become MatSOR_SeqAIJ()

○ Data dependencies between iterations in nested loops

○ Require major modifications and algorithm re-design in the code

○ Require knowledge of parallel algorithms

25

Thank you!
Q & A

26

A frequently asked question

● Q: Is it necessary to port PETSc application to heterogeneous

platforms?

○ Many supercomputers have more powerful CPU than Titan does. Users

may get better speedups by simply running their legacy CPU codes on

those supercomputers.

● A: Most researchers/scientists cannot access those supercomputers.

Instead, many of them can only use university computing facilities or

in-house Beowulf clusters, which may also have GPU cards installed.
27

Background: target readers

● Physics (o) and numerical methods (?)

● HPC or parallel programming trainings (o)

● Experience in real-world HPC programming (x)

○ Legacy codes developed by previous group members long time ago

● Willing to put much effort to modify their legacy code (x)

○ Project budgets or timelines don’t allow them to do so

28

In main():

1. User-defined functions

○ Prepare a linear system (Ax=b).

2. PETSc function -- KSPSetup()

○ PETSc analyzes sets up the solver.

3. PETSc function -- KSPSolve()

○ PETSc solves the linear system.

Background: PETSc -- typical use case

29

} Black boxes to normal
PETSc users.

The only part controlled
by normal PETSc users.

MatMult_SeqAIJ -- OpenACC strategies

Option 1. outer loop ➞ blocks/gangs; inner loop ➞ threads/vectors

○ Simple tasks per thread

○ n may be smaller than 32 for some sparse matrices

Option 2. outer loop ➞ threads/vectors; inner loop ➞ sequential

○ Heavier tasks per thread, if n is not small enough

○ Maximize the utilization of a GPU, if m is large enough

30

