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Background

 MBFLO3 is a general-purpose, three-dimensional, multi-block structured-
grid, finite-volume, multidisciplinary solution procedure
– Primary application of MBFLO3 is modeling turbomachinery (e.g., compressors and turbines) for 

aerospace.

– Explicit Lax-Wendroff control-volume, time-marching scheme

– Multi-block structured-grids with both

point-matched and overset interface capabilities

– Multigrid acceleration for steady flows;

point-implicit dual time-step for unsteady flows.

– Conjugate heat transfer modeling via coupled

fluid-thermal solvers.
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Motivation

 MBFLO3 originally used only MPI for parallelism across CPU cores.
– One MPI rank per mesh block.

– Blocks partitioned with STAGE3 preprocessor / grid-generator.

– Arbitrary mesh block subdivision not available for point-matched, multi-block grids.

 Fixed mesh partitioning limits strong scaling, especially as we transition to 
many-core devices.
– On-chip (cache) memory per-core has been stagnant for multi-core devices and memory per-core 

on newer many-core devices is lower.
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Goals

 Redesign / refactor MBFLO3 to harness
– single instruction multiple data (SIMD) vectorization … i.e., improve fine-grain data parallelism.

– device-level parallel … i.e., implement coarse-grain thread / task parallelism.

 Implement data and thread parallelism in platform-independent manner 
so as to apply to variety of heterogeneous multi-core and many-devices.
– That is, support multi-core CPUs and many-core devices such as GPUs and Intel Xeon Phi (KNC / 

KNL).

– Use standards-based approaches, OpenMP and OpenACC, to provide platform independence for 
Fortran90 code base.
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MBFLO3 Refactoring

 Original MBFLO3 used a cache-friendly M/I/J/K indexing scheme. 
U(5,Imax,Jmax,Kmax)

– This is suitable for scalar CPUs with strong cache dependencies.

– CPUs are becoming hybrid scalar-vector processors so we needed to reorder arrays to promote 
inner loop vectorization.

– Accelerators (MICs and GPUs) rely on vectorization already: effective vector widths of 8-32 words 
per operation (e.g., AVX-512).

 Transposed indices and created BLK data structure at the same time for 
most MBFLO3 routines. BLK(n)%U(Imax,Jmax,Kmax,5)
– Improved performance largely due to improved vectorization facilitated by vector-friendly layout.
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MBFLO3 Refactoring

 Added OpenMP thread parallelism to the outer J/K-loops for multi-core 
CPUs in all computationally-intensive MBFLO3 routines.
– Nested I/J/K loops collapsed to increase the thread parallelism using OpenMP collapse feature.

 Added OpenMP SIMD directives (where needed) to the inner i-loop for 
CPUs and MIC accelerators.
– Inner loop vectorization necessary for all accelerators and CPUs.

– Works in concert with J/K outer loop collapsing.
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MBFLO3 Refactoring

 Added OpenACC gang parallelism to the outer J/K-loops in all 
computationally-intensive MBFLO3 routines.
– Nested I/J/K loops collapsed to increase the gang parallelism using OpenACC collapse feature.

 Added OpenACC vector loop directive to the inner i-loop for GPU 
accelerators.
– Inner loop vectorization necessary for all accelerators and CPUs.

– Works in concert with J/K outer loop collapsing.

 Added OpenACC ENTER/EXIT DATA and UPDATE directives to manage data 
on host / device

 Added OpenACC WAIT directive to ensure synchronization.
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Thread / Gang / Task Parallelism

 Adding OpenMP / OpenACC thread parallelism to the outer j/k-loops for multi-core CPUs 
and many-core devices.

!$omp parallel do collapse(2)

do k = 1,kmax

do j = 1,jmax

do i = 1,imax

<ijk kernel>

– OpenMP/OpenACC will split up the outer (k) loop across the available cores: i.e., worksharing loop 

iterations.

– If kmax < number of processing elements, then we waste the resources.

– collapse(2) merges (or flattens) the j and k loops. Signals to OpenMP/OpenACC to split up all 

Jmax*Kmax iterations … but with some overhead.

– No OpenMP equivalent for OpenACC tile(8,8). Useful for cache blocking.

!$omp parallel do

do jk = 1,jmax*kmax

k = jk / jmax

j = jk – k*jmax

do i = 1, imax

<ijk kernel>

Behaves like …
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Data (Vector) Parallelism

 Add SIMD / VECTOR directives to the inner i-loop to promote / enforce vectorization 

along fastest array index.

– ~4-8x potential (64b precision) speed-up on SB, IVB, HW cores.

– ~8-16x potential speed-up on AVX512 cores.

– ~32-way data (thread) parallelism on CUDA GPUs.

– Works in concert with OpenMP / OpenACC collapsed outer j/k loops.

!$omp parallel do collapse(2) private( xvel,… )

!$acc parallel loop gang collapse(2) vector_length(64)

!$acc&   async( block_idx ) pcopyin( x,u … ) pcopy( du, … )

Do k = 1, kmax

Do j = 1, jmax

!$omp simd safelen(8)

!$acc loop vector

Do i = 1, imax

xvel = u(i,j,k,2) / u(i,j,k,1)

du(i,j,k,1) = du(i,j,k,1) + xvel**2

⁞
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Task Parallelism

 Small boundary condition and block-interface (BLKBND) routines cannot be 
efficiently threaded with loop-level parallelism.

 BLKBND routines:

– only touch surface mesh nodes (2d v. 3d … cheap)

– vectorize poorly (non-unit stride and often use indirect addressing)

– unstructured control loops (unknown loop counts).

– different BC’s take different amount of time (non-uniform workload)

 Used OpenMP Tasks to parallelize complex, unstructured BC function calls.

– With sufficient # of tasks, automatically load balances across the threads.

– Avoids serialized bottleneck and poor scaling on many-core devices such as KNL.
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Task Parallelism
!$omp parallel private (n,blkid,f,p) shared (irecv,buf)

!$omp single

! -- Loop over all blocks, faces, and subface patches.

Do n = 1, n_blocks

blkid = block_list(n)

Do f = 1, 6

Do p = 1, n_face_patches(blkid, f)

If ( has_remote_neighbor( blkid,f,p ) ) Then

! -- Enqueue task to unpack shared buffer filled by MPI_Recv.

irecv = irecv + 1

!$omp task firstprivate( irecv,blkid,f,p )

call unpack_recv_buf( buf(irecv),blkid,f,p,… )

!$omp end task

Else

! -- Enqueue task to set conditions on a subface patch

!$omp task firstprivate( blkid,f,p )

call set_phys_bc( blkid,f,p,… )

!$omp end task

Endif

Enddo

Enddo

Enddo

!$omp end single nowait

!$omp end parallel
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Heterogeneous Design

 OpenMP is well suited for multi-core parallelism with multi-threading.

 OpenACC is well suited for many-core offloading.

 Ideally, blend the two to use both the multi-core host concurrently with 
the many-core accelerator.

 Both OpenMP and OpenACC can reside within the same source code but 
cannot compile both.

 Our approach is to compile twice, once with OpenACC and once with 
OpenMP enabled, and rename the functions for ACC or OMP.

 At run-time, mesh blocks are allocated to either the accelerator or the 
host and these use the appropriate computational routines.
– Host-Device transfers required to satisfy block-interface boundary conditions.

– All block-interface data transfers occur on the host; no GPU-Direct used (at this time).
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Benchmark Conditions / Platforms

 Reporting average run-time for 60 iterations of the steady-state turbine vane 

model with 16 blocks and 1.6 million points (total).

 Benchmarks run on

– Thunder: (SGI ICE-X) at the Air Force Research Lab (AFRL) DSRC (Dayton, OH)

 PGI 16.7 compiler; 2 Haswell (E5-2697v3) CPUs with 14 cores per CPU and 2 NVIDIA K40m GPUs

– ARL-KNL Testbed: the Army Research Laboratory (ARL) DSRC (Aberdeen, MD)

 Intel 17.2 compiler; 64-core Intel Xeon Phi 7230

– Hokule’a: (IBM Power8 + 4 P100 GPUs) at the Maui HPC Center (MHPCC).

 PGI 17.7 compiler; 2 IBM Power8 with 4 P100-SXM2 (16 GB)
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Host (HSW) OpenMP Parallelism
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Function Name

Single-core OMP-14cores Speed-up

• 2.2x net speed-up due to 
vectorization (over original 
single-threaded)

• 8.5x OMP speed-up over 
refactored single-threaded. 
(61%)
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KNL OpenMP Parallelism
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Task parallelism for 
BC routines 
improved net 
speed-up from 17x 
to 29x on KNL with 
64 threads.
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KNL Data Parallelism
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Offload GPU Parallelism

0.00

0.04

0.08

0.12

0.16

0.20

d
el

ta
t

fl
u

x

b
co

n
d

re
f

b
lk

b
n

d

sm
th

u

b
co

n
d

u
p

d
t

la
m

vi
s

st
re

ss

st
re

ss
tr

b

fl
u

xt
rb

b
co

n
d

re
ft

rb

b
lk

b
n

d
tr

b

sm
th

tr
b

b
co

n
d

tr
b

u
p

d
tt

rb

re
si

d
tr

b

tr
b

o
th

e
r

co
n

ju
ga

te

re
si

d

o
th

er

R
u

n
-t

im
e 

(s
ec

)

Function Name

OMP-14cores ACC-K40m-Async ACC-K40m-Sync

Host-Device 
Communication 
costs



Distribution Statement A: Approved for public release:  distribution unlimited. 19

Multi-device Performance Comparison:
Intel Haswell + NVIDIA Kepler K40m
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Heterogeneous CPU/GPU Parallelism:
OMP-to-ACC workload ratio with pinned memory
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Heterogeneous CPU/GPU Parallelism:
OMP-to-ACC workload ratio without pinned memory
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Multi-device Performance Comparison:
IBM Power8 + NVIDIA Pascal P100
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Heterogeneous CPU/GPU Parallelism:
OMP-to-ACC workload ratio on PWR8+P100
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Conclusions

 Refactoring legacy CFD applications requires 3-pronged approach:
– Coarse-grained multi-threading (tasks / threads / gangs)

– Fine-grained data parallelism (SIMD / SIMT vectorization)

– Data layout optimization to promote cache / vector efficiency (e.g., unit stride)

 OpenMP task-level parallelism helpful to improve non-uniform, 
unstructured code regions, especially on many-core environments.
– 70% performance improvement observed in KNL by avoiding serialized code sections.

 Heterogeneous CPU-GPU requires balancing workload across devices.
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Conclusions

 Single-GPU performance improved with pinned memory but found to be 
detrimental in multi-device setting.
– 30% slower with non-pinned memory on one K40m but 25% faster in multi-GPU environment.

– When combined with host-side multi-core parallelism, non-pinned is 32% faster with workload 
of 40% (ACC-to-OMP).

 Newer P100 provided 46% performance improvement over K40m with 
no code modifications.

 Higher density PWR8 GPU system required high ACC-to-OMP workload 
ratio (100%) to reach maximum performance.
– HSW-Kepler system provided 17% higher overall performance but used twice as many nodes in 

heterogeneous environment: 8 K40m + 8 HSW CPUs v. 8 P100’s + 4 PWR8 CPUs.

 Current application spends majority of time in communication in 
heterogeneous environment.
– Must incorporate GPU-aware MPI methods to reduce host-device transfer costs.


