
Distribution Statement 1: Approved for public release: distribution unlimited.

Concurrent parallel processing on Graphics and
Multicore Processors with OpenACC and OpenMP

Christopher P. Stone, DoD HPCMP PETTT Program

Prof. Roger L. Davis and Daryl Lee, U. of California Davis

Distribution Statement A: Approved for public release: distribution unlimited. 2

Acknowledgments

 This material is based upon work supported by, or in part by, the
Department of Defense High Performance Computing Modernization
Program (HPCMP) under User Productivity, Technology Transfer and
Training (PETTT) contract number GS04T09DBC0017.

Distribution Statement A: Approved for public release: distribution unlimited. 3

Background

 MBFLO3 is a general-purpose, three-dimensional, multi-block structured-
grid, finite-volume, multidisciplinary solution procedure
– Primary application of MBFLO3 is modeling turbomachinery (e.g., compressors and turbines) for

aerospace.

– Explicit Lax-Wendroff control-volume, time-marching scheme

– Multi-block structured-grids with both

point-matched and overset interface capabilities

– Multigrid acceleration for steady flows;

point-implicit dual time-step for unsteady flows.

– Conjugate heat transfer modeling via coupled

fluid-thermal solvers.

Distribution Statement A: Approved for public release: distribution unlimited. 4

Motivation

 MBFLO3 originally used only MPI for parallelism across CPU cores.
– One MPI rank per mesh block.

– Blocks partitioned with STAGE3 preprocessor / grid-generator.

– Arbitrary mesh block subdivision not available for point-matched, multi-block grids.

 Fixed mesh partitioning limits strong scaling, especially as we transition to
many-core devices.
– On-chip (cache) memory per-core has been stagnant for multi-core devices and memory per-core

on newer many-core devices is lower.

Distribution Statement A: Approved for public release: distribution unlimited. 5

Goals

 Redesign / refactor MBFLO3 to harness
– single instruction multiple data (SIMD) vectorization … i.e., improve fine-grain data parallelism.

– device-level parallel … i.e., implement coarse-grain thread / task parallelism.

 Implement data and thread parallelism in platform-independent manner
so as to apply to variety of heterogeneous multi-core and many-devices.
– That is, support multi-core CPUs and many-core devices such as GPUs and Intel Xeon Phi (KNC /

KNL).

– Use standards-based approaches, OpenMP and OpenACC, to provide platform independence for
Fortran90 code base.

Distribution Statement A: Approved for public release: distribution unlimited. 6

MBFLO3 Refactoring

 Original MBFLO3 used a cache-friendly M/I/J/K indexing scheme.
U(5,Imax,Jmax,Kmax)

– This is suitable for scalar CPUs with strong cache dependencies.

– CPUs are becoming hybrid scalar-vector processors so we needed to reorder arrays to promote
inner loop vectorization.

– Accelerators (MICs and GPUs) rely on vectorization already: effective vector widths of 8-32 words
per operation (e.g., AVX-512).

 Transposed indices and created BLK data structure at the same time for
most MBFLO3 routines. BLK(n)%U(Imax,Jmax,Kmax,5)
– Improved performance largely due to improved vectorization facilitated by vector-friendly layout.

Distribution Statement A: Approved for public release: distribution unlimited. 7

MBFLO3 Refactoring

 Added OpenMP thread parallelism to the outer J/K-loops for multi-core
CPUs in all computationally-intensive MBFLO3 routines.
– Nested I/J/K loops collapsed to increase the thread parallelism using OpenMP collapse feature.

 Added OpenMP SIMD directives (where needed) to the inner i-loop for
CPUs and MIC accelerators.
– Inner loop vectorization necessary for all accelerators and CPUs.

– Works in concert with J/K outer loop collapsing.

Distribution Statement A: Approved for public release: distribution unlimited. 8

MBFLO3 Refactoring

 Added OpenACC gang parallelism to the outer J/K-loops in all
computationally-intensive MBFLO3 routines.
– Nested I/J/K loops collapsed to increase the gang parallelism using OpenACC collapse feature.

 Added OpenACC vector loop directive to the inner i-loop for GPU
accelerators.
– Inner loop vectorization necessary for all accelerators and CPUs.

– Works in concert with J/K outer loop collapsing.

 Added OpenACC ENTER/EXIT DATA and UPDATE directives to manage data
on host / device

 Added OpenACC WAIT directive to ensure synchronization.

Distribution Statement A: Approved for public release: distribution unlimited. 9

Thread / Gang / Task Parallelism

 Adding OpenMP / OpenACC thread parallelism to the outer j/k-loops for multi-core CPUs
and many-core devices.

!$omp parallel do collapse(2)

do k = 1,kmax

do j = 1,jmax

do i = 1,imax

<ijk kernel>

– OpenMP/OpenACC will split up the outer (k) loop across the available cores: i.e., worksharing loop

iterations.

– If kmax < number of processing elements, then we waste the resources.

– collapse(2) merges (or flattens) the j and k loops. Signals to OpenMP/OpenACC to split up all

Jmax*Kmax iterations … but with some overhead.

– No OpenMP equivalent for OpenACC tile(8,8). Useful for cache blocking.

!$omp parallel do

do jk = 1,jmax*kmax

k = jk / jmax

j = jk – k*jmax

do i = 1, imax

<ijk kernel>

Behaves like …

Distribution Statement A: Approved for public release: distribution unlimited. 10

Data (Vector) Parallelism

 Add SIMD / VECTOR directives to the inner i-loop to promote / enforce vectorization

along fastest array index.

– ~4-8x potential (64b precision) speed-up on SB, IVB, HW cores.

– ~8-16x potential speed-up on AVX512 cores.

– ~32-way data (thread) parallelism on CUDA GPUs.

– Works in concert with OpenMP / OpenACC collapsed outer j/k loops.

!$omp parallel do collapse(2) private(xvel,…)

!$acc parallel loop gang collapse(2) vector_length(64)

!$acc& async(block_idx) pcopyin(x,u …) pcopy(du, …)

Do k = 1, kmax

Do j = 1, jmax

!$omp simd safelen(8)

!$acc loop vector

Do i = 1, imax

xvel = u(i,j,k,2) / u(i,j,k,1)

du(i,j,k,1) = du(i,j,k,1) + xvel**2

⁞

Distribution Statement A: Approved for public release: distribution unlimited. 11

Task Parallelism

 Small boundary condition and block-interface (BLKBND) routines cannot be
efficiently threaded with loop-level parallelism.

 BLKBND routines:

– only touch surface mesh nodes (2d v. 3d … cheap)

– vectorize poorly (non-unit stride and often use indirect addressing)

– unstructured control loops (unknown loop counts).

– different BC’s take different amount of time (non-uniform workload)

 Used OpenMP Tasks to parallelize complex, unstructured BC function calls.

– With sufficient # of tasks, automatically load balances across the threads.

– Avoids serialized bottleneck and poor scaling on many-core devices such as KNL.

Distribution Statement A: Approved for public release: distribution unlimited. 12

Task Parallelism
!$omp parallel private (n,blkid,f,p) shared (irecv,buf)

!$omp single

! -- Loop over all blocks, faces, and subface patches.

Do n = 1, n_blocks

blkid = block_list(n)

Do f = 1, 6

Do p = 1, n_face_patches(blkid, f)

If (has_remote_neighbor(blkid,f,p)) Then

! -- Enqueue task to unpack shared buffer filled by MPI_Recv.

irecv = irecv + 1

!$omp task firstprivate(irecv,blkid,f,p)

call unpack_recv_buf(buf(irecv),blkid,f,p,…)

!$omp end task

Else

! -- Enqueue task to set conditions on a subface patch

!$omp task firstprivate(blkid,f,p)

call set_phys_bc(blkid,f,p,…)

!$omp end task

Endif

Enddo

Enddo

Enddo

!$omp end single nowait

!$omp end parallel

Distribution Statement A: Approved for public release: distribution unlimited. 13

Heterogeneous Design

 OpenMP is well suited for multi-core parallelism with multi-threading.

 OpenACC is well suited for many-core offloading.

 Ideally, blend the two to use both the multi-core host concurrently with
the many-core accelerator.

 Both OpenMP and OpenACC can reside within the same source code but
cannot compile both.

 Our approach is to compile twice, once with OpenACC and once with
OpenMP enabled, and rename the functions for ACC or OMP.

 At run-time, mesh blocks are allocated to either the accelerator or the
host and these use the appropriate computational routines.
– Host-Device transfers required to satisfy block-interface boundary conditions.

– All block-interface data transfers occur on the host; no GPU-Direct used (at this time).

Distribution Statement A: Approved for public release: distribution unlimited. 14

Benchmark Conditions / Platforms

 Reporting average run-time for 60 iterations of the steady-state turbine vane

model with 16 blocks and 1.6 million points (total).

 Benchmarks run on

– Thunder: (SGI ICE-X) at the Air Force Research Lab (AFRL) DSRC (Dayton, OH)

 PGI 16.7 compiler; 2 Haswell (E5-2697v3) CPUs with 14 cores per CPU and 2 NVIDIA K40m GPUs

– ARL-KNL Testbed: the Army Research Laboratory (ARL) DSRC (Aberdeen, MD)

 Intel 17.2 compiler; 64-core Intel Xeon Phi 7230

– Hokule’a: (IBM Power8 + 4 P100 GPUs) at the Maui HPC Center (MHPCC).

 PGI 17.7 compiler; 2 IBM Power8 with 4 P100-SXM2 (16 GB)

Distribution Statement A: Approved for public release: distribution unlimited. 15

Host (HSW) OpenMP Parallelism

0

2

4

6

8

10

12

14

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

d
el

ta
t

fl
u

x

b
co

n
d

re
f

b
lk

b
n

d

sm
th

u

b
co

n
d

u
p

d
t

la
m

vi
s

st
re

ss

st
re

ss
tr

b

fl
u

xt
rb

b
co

n
d

re
ft

rb

b
lk

b
n

d
tr

b

sm
th

tr
b

b
co

n
d

tr
b

u
p

d
tt

rb

re
si

d
tr

b

tr
b

o
th

er

co
n

ju
ga

te

re
si

d

o
th

er

Sp
ee

d
-u

p

R
u

n
-t

im
e

(s
ec

)

Function Name

Single-core OMP-14cores Speed-up

• 2.2x net speed-up due to
vectorization (over original
single-threaded)

• 8.5x OMP speed-up over
refactored single-threaded.
(61%)

Distribution Statement A: Approved for public release: distribution unlimited. 16

KNL OpenMP Parallelism

0

6

12

18

24

30

36

0.0

0.1

0.2

0.3

0.4

0.5

0.6

d
el

ta
t

fl
u

x

b
co

n
d

re
f

b
lk

b
n

d

sm
th

u

b
co

n
d

u
p

d
t

la
m

vi
s

st
re

ss

st
re

ss
tr

b

fl
u

xt
rb

b
co

n
d

re
ft

rb

b
lk

b
n

d
tr

b

sm
th

tr
b

b
co

n
d

tr
b

u
p

d
tt

rb

re
si

d
tr

b

co
n

ju
ga

te

re
si

d

Sp
ee

d
-u

p

R
u

n
-t

im
e

(s
ec

)

Function Name

Single-core OMP-64 Speed-up Speed-up NoTasks

Task parallelism for
BC routines
improved net
speed-up from 17x
to 29x on KNL with
64 threads.

Distribution Statement A: Approved for public release: distribution unlimited. 17

KNL Data Parallelism

0

2

4

6

8

10

12

14

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

d
-u

p

ru
n

-t
im

e
(s

ec
)

Function Name

Single-threaded Code Comparison: KNL (HBM)

Original

Refactored

Speed-up

Distribution Statement A: Approved for public release: distribution unlimited. 18

Offload GPU Parallelism

0.00

0.04

0.08

0.12

0.16

0.20

d
el

ta
t

fl
u

x

b
co

n
d

re
f

b
lk

b
n

d

sm
th

u

b
co

n
d

u
p

d
t

la
m

vi
s

st
re

ss

st
re

ss
tr

b

fl
u

xt
rb

b
co

n
d

re
ft

rb

b
lk

b
n

d
tr

b

sm
th

tr
b

b
co

n
d

tr
b

u
p

d
tt

rb

re
si

d
tr

b

tr
b

o
th

e
r

co
n

ju
ga

te

re
si

d

o
th

er

R
u

n
-t

im
e

(s
ec

)

Function Name

OMP-14cores ACC-K40m-Async ACC-K40m-Sync

Host-Device
Communication
costs

Distribution Statement A: Approved for public release: distribution unlimited. 19

Multi-device Performance Comparison:
Intel Haswell + NVIDIA Kepler K40m

0

2

4

6

8

10

1 2 4 8 16

Sp
ee

d
-u

p
 (

o
ve

r
M

P
I-

o
n

ly
)

Number of MPI Processes

MPI+OMP-7

MPI+OMP-14

MPI+ACC

Unexpected behavior
(largely) due to block-level
partitioning changing intra-
to inter-node
communication

Distribution Statement A: Approved for public release: distribution unlimited. 20

Heterogeneous CPU/GPU Parallelism:
OMP-to-ACC workload ratio with pinned memory

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 4 8 16

Ti
m

e
p

er
 t

im
es

te
p

 (
se

c)

Number of GPUs (and CPUs)

0.0

0.2

0.4

0.5

0.6

0.8

1.0

OMP14

Distribution Statement A: Approved for public release: distribution unlimited. 21

Heterogeneous CPU/GPU Parallelism:
OMP-to-ACC workload ratio without pinned memory

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 4 8 16

Ti
m

e
p

er
 t

im
es

te
p

 (
se

c)

Number of GPUs (and CPUs)

0.0

0.2

0.4

0.5

0.6

0.8

1.0

OMP14

Distribution Statement A: Approved for public release: distribution unlimited. 22

Multi-device Performance Comparison:
IBM Power8 + NVIDIA Pascal P100

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16

Sp
ee

d
-u

p
 (

o
ve

r
M

P
I-

o
n

ly
)

Number of MPI Processes

Speed-up: MPI v. Hybrid

MPI+OMP-20

MPI+ACC

Distribution Statement A: Approved for public release: distribution unlimited. 23

Heterogeneous CPU/GPU Parallelism:
OMP-to-ACC workload ratio on PWR8+P100

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1 2 4 8 16

Ti
m

e
p

er
 t

im
es

te
p

 (
se

c)

Number of GPUs (and CPUs)

0.0

0.2

0.4

0.5

0.6

0.8

1.0

OMP20

Distribution Statement A: Approved for public release: distribution unlimited. 24

Conclusions

 Refactoring legacy CFD applications requires 3-pronged approach:
– Coarse-grained multi-threading (tasks / threads / gangs)

– Fine-grained data parallelism (SIMD / SIMT vectorization)

– Data layout optimization to promote cache / vector efficiency (e.g., unit stride)

 OpenMP task-level parallelism helpful to improve non-uniform,
unstructured code regions, especially on many-core environments.
– 70% performance improvement observed in KNL by avoiding serialized code sections.

 Heterogeneous CPU-GPU requires balancing workload across devices.

Distribution Statement A: Approved for public release: distribution unlimited. 25

Conclusions

 Single-GPU performance improved with pinned memory but found to be
detrimental in multi-device setting.
– 30% slower with non-pinned memory on one K40m but 25% faster in multi-GPU environment.

– When combined with host-side multi-core parallelism, non-pinned is 32% faster with workload
of 40% (ACC-to-OMP).

 Newer P100 provided 46% performance improvement over K40m with
no code modifications.

 Higher density PWR8 GPU system required high ACC-to-OMP workload
ratio (100%) to reach maximum performance.
– HSW-Kepler system provided 17% higher overall performance but used twice as many nodes in

heterogeneous environment: 8 K40m + 8 HSW CPUs v. 8 P100’s + 4 PWR8 CPUs.

 Current application spends majority of time in communication in
heterogeneous environment.
– Must incorporate GPU-aware MPI methods to reduce host-device transfer costs.

