THE
U UNIVERSITY < N\VIDIA
OF UTAH® ~N— ©

Automatic Testing of
OpenACC Applications

Khalid Ahmad Michael Wolfe
School of Computing/University of Utah NVIDIA/PGI

November 13th 2017

Why Test?

When optimizing or porting

Validate the optimization or the port

ldentify where the computations start to diverge

Use Cases

General

* Validate a new machine (x86, ARM, OpenPower)
* Validate a different version of the compiler

* Validate a new compiler optimization

» Validate modifications / new algorithms

GPU / OpenACC

* Find where computations start to diverge

* Programmer error: missing data movement

* Hardware differences: different FMA, rounding, intrinsics, accumulation order
 Compiler bugs

Code Example

1) void vectorSinGPU(double *A, double *C, uint32 t N)
2) |

3) // Ensure the data is available on the device

4) #pragma acc data copyin(A[0:N]) copyout(C[0:N])
o) B

6) // Compute construct

7) #pragma acc kernels loop independent present(A[0:N],C[0:N])
8) for (int1=0; 1 <N; 1++) {

9) C[i] = fsin(A[1]);

10)

1y }

12) }

1) General Compare

« The user may specify several parameters using environment variables
« User passes pointer to data, datatype, size
« User creates golden data file with known correct settings / program

« User reruns program to compare with golden data file

General Compare Code Example

1) void vectorSinGPU(double *A, double * C, uint32 t N){

2) #pragma acc enter data copyin(A[0:N])

3) #pragma acc enter data create(C[0:N])

4) #pragma acc kernels loop present(A[0:N],C[0:N]) independent
5) for (int1=0;1<N;1++) {

6) C[i] = sin(A[1]);

7) h

) //Copy output data from the CUDA device to the host memory
9) #pragma acc exit data copyout(C[0:N])

10) #pragma acc exit data delete(A[0:N])

1) pgi_compare(C,"double",N, FILE , LINE);
12) pgi_compare(A,"double"N, FILE , LINE);
13) }

How to use the general compare

1) export PGI_COMPARE=FILE=TRIAL,CREATE
2) Run program with function calls

3) export PGI_COMPARE=FILE=TRIAL,rel=5,COMPARE

4) Rerun program with function calls

PGI_Compare Environment Variable

Option Description

abs=r Use 10" as an absolute tolerance

rel=r Use 10" as a relative tolerance

report=n Report first n differences

skip=n Skip the first n differences

atch Patch erroneous values with correct

P values

stop Stop after report= differences

summar Print a summary of the comparisons and
y differences found at program exit

OpenACC Background

* OpenACC runtime manages two copies of the data, host and device,
and identified by the present table.

* Present table is indexed by the host address, contains device address,
data size, data type

2) Host Device Compare*

e User passes pointer to host resident data and size of data
e Function locates the relevant device data pointer in the present table
e Using the present table we can also know the data type being used

e Then we perform a data type based comparison

* The autocompare will be exposed with a command line option, when it gets released in an upcoming PGI version sometime hopefully in early 2018

Auto-compare flow chart

a

CPU

Serial code

Execute host
compute region

Do the comparison
and print out the
results

N

\

Copy the data back
from the devi

GPU

Execute device

compute region

11

Host Device Compare Code Example

1) void vectorSinGPU(double *A, double * C, uint32 t N){

2) #pragma acc enter data copyin(A[0:N])

3) #pragma acc enter data create(C[0:N])

4) #pragma acc kernels loop present(A[0:N],C[0:N]) independent
5) for (int1=0; 1 <N; 1++) {

6) Cl[1] = sin(A[1]);

7) §

8) acc_compare(C,N);

9) //Copy output data from the CUDA device to the host memory
10) #pragma acc exit data copyout(C[0:N])

11) #pragma acc exit data delete(A[0:N])

12) }

12

3) Host Device Compare All*

* No parameters to pass, data type is stored in the present table, so
the compares are type-aware even though the user doesn't identify
the data types

* The function traverses the present table

* And calls the compare function on each entry in the present table

* The autocompare will be exposed with a command line option, when it gets released in an upcoming PGI version sometime hopefully in early 2018

Host Device Compare AllCode Example

1) void vectorSinGPU(double *A, double * C, uint32 t N){

2) #pragma acc enter data copyin(A[0:N])

3) #pragma acc enter data create(C[0:N])

4) #pragma acc kernels loop present(A[0:N],C[0:N]) independent
5) for (inti=0;1<N;1++) {

6) Cl1] = sin(A[1]);

7) ;

8) acc_compare_all();

9) //Copy output data from the CUDA device to the host memory
10) #pragma acc exit data copyout(C[0:N])

11) #pragma acc exit data delete(A[0:N])

12)

14

Implementation

acc_compare.c

acc_compare_all.c

usercompare_all.c

usercompare.C .

compare.c

check_mod.c

FILE=“name” V
CREATE Vv
COMPARE V
VERBOSE
PATCH

STOP

SKIP=#
REPORT=# V
ABS v
REL Vv

15

Auto-compare Overhead Cost

20.00 m Compute Time
® Redundancy Overhead
18.00 » Download Time
Compare Time
16.00
14.00

Time (seconds)
— —
© o N
o = o
o o o

o
o
o

4.00
I C I l =
0.00

ostencil olbm omrig palm miniGhost

Single core Intel Haswell Benchmark
Nvidia Pascal P100

700.00

600.00

500.00

400.00

300.00

200.00

100.00

0.00

cg

csp

ilbdc

bt

Benchmark Statistics

Variables and Values Variables _and :
Benchmark arrays compared compared arrays with Differences tolerated
differences
ostencil 202 3,388,997,632 0 0
olbm 61 586,800,000 59 520,634,266
omriq 3 68,608 2 53,240
palm 31,244 1,532,482,935 14,784 374,679,922
ep 4 13 2 2
cg 186 621,600,195 168 4,858,272
csp 4,057 40,132,155,677 3,897 5,693,059
miniGhost 2,506 1,844,059,545 175 175
ilbdc 3,001 53,818,895,200 2,000 35,305,830,600
bt 5,036 15,041,440,200 4,798 38,931,891

Comparing Byte Count vs Compare Time

450.00
400.00
350.00
M compare ovhd bytes of data
300.00
250.00
200.00

150.00

Time (seconds)

100.00

50.00

0.00 = | — — =

ostencil olbm omriq palm ep cg csp miniGhost ilbdc

Benchmark

bt

4E+11

3.5E+11

3E+11

2.5E+11

2E+11

1.5E+11

1E+11

SE+10

0

Bytes

18

Related Work

1) OpenARC compiler framework
* Similar to our auto-compare feature
* User specifies the desired compute region to test
* The rest of the program is run sequentially including other compute regions

1) Cray Comparative Debugger (CCDB) allows the programmer to

* Launch two versions of a program
* Add breakpoints
* Does not support automatic testing

Future Work

* General
*Implementing more options such as skip, patch, stop, bits ...

* Implement a pragma version
* Adding support for nested data structures and derived types
*Optimize the speed of the comparison
*Option that runs the comparisons in parallel
*Reduce the number of values being compared
*Compare only specific compute constructs to reduce the overall cost

* Auto compare
* Running the host code in parallel
* Running the compare on the GPU

Summary

* Tool that automatically detect numerical differences and help identify bugs

* Overhead of the redundant execution dominated by the slower execution
unit

Debuggers and correctness checkers always introduce some overhead,
which is fine and in most cases still a lot faster than a manual investigation

