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Why Test?

When optimizing or porting

Validate the optimization or the port

ldentify where the computations start to diverge



Use Cases

General

* Validate a new machine (x86, ARM, OpenPower)
* Validate a different version of the compiler

* Validate a new compiler optimization

» Validate modifications / new algorithms

GPU / OpenACC

* Find where computations start to diverge

* Programmer error: missing data movement

* Hardware differences: different FMA, rounding, intrinsics, accumulation order
 Compiler bugs



Code Example

1) void vectorSinGPU(double *A, double *C, uint32 t N)
2) |

3) // Ensure the data is available on the device

4)  #pragma acc data copyin(A[0:N]) copyout(C[0:N])
o) B

6) // Compute construct

7) #pragma acc kernels loop independent present(A[0:N],C[0:N])
8) for (int1=0; 1 <N; 1++) {

9) C[i] = fsin(A[1]);

10)

1y }

12) }



1) General Compare

« The user may specify several parameters using environment variables
« User passes pointer to data, datatype, size
« User creates golden data file with known correct settings / program

« User reruns program to compare with golden data file



General Compare Code Example

1) void vectorSinGPU(double *A, double * C, uint32 t N){

2) #pragma acc enter data copyin(A[0:N])

3) #pragma acc enter data create(C[0:N])

4) #pragma acc kernels loop present(A[0:N],C[0:N]) independent
5) for (int1=0;1<N;1++) {

6) C[i] = sin(A[1]);

7) h

) //Copy output data from the CUDA device to the host memory
9) #pragma acc exit data copyout(C[0:N])

10) #pragma acc exit data delete(A[0:N])

1) pgi_compare(C,"double",N, FILE , LINE );
12)  pgi_compare(A,"double"N, FILE , LINE );
13) }




How to use the general compare

1) export PGI_COMPARE=FILE=TRIAL,CREATE
2) Run program with function calls

3) export PGI_COMPARE=FILE=TRIAL,rel=5,COMPARE

4) Rerun program with function calls



PGI_Compare Environment Variable

Option Description

abs=r Use 10" as an absolute tolerance

rel=r Use 10" as a relative tolerance

report=n Report first n differences

skip=n Skip the first n differences

atch Patch erroneous values with correct

P values

stop Stop after report= differences

summar Print a summary of the comparisons and
y differences found at program exit




OpenACC Background

* OpenACC runtime manages two copies of the data, host and device,
and identified by the present table.

* Present table is indexed by the host address, contains device address,
data size, data type



2) Host Device Compare*

e User passes pointer to host resident data and size of data
e Function locates the relevant device data pointer in the present table
e Using the present table we can also know the data type being used

e Then we perform a data type based comparison

* The autocompare will be exposed with a command line option, when it gets released in an upcoming PGI version sometime hopefully in early 2018



Auto-compare flow chart
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Host Device Compare Code Example

1) void vectorSinGPU(double *A, double * C, uint32 t N){

2) #pragma acc enter data copyin(A[0:N])

3) #pragma acc enter data create(C[0:N])

4) #pragma acc kernels loop present(A[0:N],C[0:N]) independent
5) for (int1=0; 1 <N; 1++) {

6) Cl[1] = sin(A[1]);

7) §

8) acc_compare(C,N);

9) //Copy output data from the CUDA device to the host memory
10) #pragma acc exit data copyout(C[0:N])

11) #pragma acc exit data delete(A[0:N])

12) }
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3) Host Device Compare All*

* No parameters to pass, data type is stored in the present table, so
the compares are type-aware even though the user doesn't identify
the data types

* The function traverses the present table

* And calls the compare function on each entry in the present table

* The autocompare will be exposed with a command line option, when it gets released in an upcoming PGI version sometime hopefully in early 2018



Host Device Compare AllCode Example

1) void vectorSinGPU(double *A, double * C, uint32 t N){

2) #pragma acc enter data copyin(A[0:N])

3) #pragma acc enter data create(C[0:N])

4) #pragma acc kernels loop present(A[0:N],C[0:N]) independent
5) for (inti=0;1<N;1++) {

6) Cl1] = sin(A[1]);

7) ;

8)  acc_compare_all();

9) //Copy output data from the CUDA device to the host memory
10) #pragma acc exit data copyout(C[0:N])

11) #pragma acc exit data delete(A[0:N])

12)
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Implementation

acc_compare.c

acc_compare_all.c

usercompare_all.c

usercompare.C .

compare.c

check_mod.c

FILE=“name” V
CREATE Vv
COMPARE V
VERBOSE
PATCH

STOP

SKIP=#
REPORT=# V
ABS v
REL Vv
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Auto-compare Overhead Cost
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Benchmark Statistics

Variables and Values Variables _and :
Benchmark arrays compared compared arrays with Differences tolerated
differences
ostencil 202 3,388,997,632 0 0
olbm 61 586,800,000 59 520,634,266
omriq 3 68,608 2 53,240
palm 31,244 1,532,482,935 14,784 374,679,922
ep 4 13 2 2
cg 186 621,600,195 168 4,858,272
csp 4,057 40,132,155,677 3,897 5,693,059
miniGhost 2,506 1,844,059,545 175 175
ilbdc 3,001 53,818,895,200 2,000 35,305,830,600
bt 5,036 15,041,440,200 4,798 38,931,891




Comparing Byte Count vs Compare Time
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Related Work

1) OpenARC compiler framework
* Similar to our auto-compare feature
* User specifies the desired compute region to test
* The rest of the program is run sequentially including other compute regions

1) Cray Comparative Debugger (CCDB) allows the programmer to

* Launch two versions of a program
* Add breakpoints
* Does not support automatic testing



Future Work

* General
*Implementing more options such as skip, patch, stop, bits ...

* Implement a pragma version
* Adding support for nested data structures and derived types
*Optimize the speed of the comparison
*Option that runs the comparisons in parallel
*Reduce the number of values being compared
*Compare only specific compute constructs to reduce the overall cost

* Auto compare
* Running the host code in parallel
* Running the compare on the GPU



Summary

* Tool that automatically detect numerical differences and help identify bugs

* Overhead of the redundant execution dominated by the slower execution
unit

Debuggers and correctness checkers always introduce some overhead,
which is fine and in most cases still a lot faster than a manual investigation



