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What is ASUCA? [6]  

• Non-hydrostatic weather prediction 
model 

• Main Japanese mesoscale weather 
model, in production since end of 
2014 

• Dynamical + physical core 

• Regular grid: 
  horizontal domain IJ, 
  vertical domain K 

• Mostly parallelizeable in IJ, K is 
mostly sequential 

Goals of Hybrid ASUCA 
• Performant GPU Implementation 

• Low code divergence 

• Code as close to original as possible - 
keep Fortran 

[6] Kawano K., Ishida J. and Muroi C.: “Development of a New Nonhydrostatic Model ASUCA at JMA”, 2010 

Cloud cover result with ASUCA using a 2km 
resolution grid and real world data

ASUCA



ASUCA… another point of view

• 155k LOC 

• 338 kernels 

• one lonely Fortran GPU programmer



simulation 
  for t ∈ [0,tend]:

routine

loop repeating  
.. statements .. 
for each x ∈ [a, b]

Legend

physics run 
  for j ∈ [1,ny]: 
    for i ∈ [1,nx]: 
     

shortwave rad. 
  for k ∈ [1,nz]: 
    .. pointwise process ..

surf. flux 
  .. pointwise process ..

call

for x ∈ [a, b]: 
  .. statements ..

p.b. phi calc 
  .. pointwise process ..

…
dycore

…
radiation

…
surface

planetary boundary

…
…
…
…

ASUCA

→ Physics are hard to port. However, leaving them on CPU 
requires Host-Device-Host data transfers for each timestep.



Focus Problems

1. Code Granularity 2. Memory Layout



Focus Problems

1. Code Granularity 2. Memory Layout

Definition of granularity: 

The amount of work done by one thread. 

For our purposes, we distinguish 
between two types of granularity: 

a) runtime defined granularity 

b) code defined granularity

simulation 
  for t ∈ [0,tend]:

physics run 
  for j ∈ [1,ny]: 
    for i ∈ [1,nx]: 
     

shortwave rad. 
  for k ∈ [1,nz]: 
    .. pointwise process ..

surf. flux 
  .. pointwise process ..

p.b. phi calc 
  .. pointwise process ..

…
dycore

…
radiation

…
surface

planetary boundary

…
…
…
…

coarse code granularity 
→GPU unfriendly, performant on CPU  
(simply parallelize j-loop)

fine code granularity 
→GPU friendly
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Definition of granularity: 

The amount of work done by one thread. 
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between two types of granularity: 

a) runtime defined granularity 

b) code defined granularity

simulation 
  for t ∈ [0,tend]:

physics run 
  for j ∈ [1,ny]: 
    for i ∈ [1,nx]: 
     

shortwave rad. 
  for k ∈ [1,nz]: 
    .. pointwise process ..

surf. flux 
  .. pointwise process ..

p.b. phi calc 
  .. pointwise process ..

…
dycore

…
radiation

…
surface

planetary boundary

…
…
…
…

• Regular grid → Fortran’s multi-dimensional 
arrays offer a simple to use and efficient 
data structure 

• Performant layout on CPU: Keep fast 
varying vertical domain in cache → k-first  
Example stencil in original code: 
A_out(k,i,j) = A(k,i,j) + A(k,i-1,j) … 

• GPU: Requires i-first or j-first for coalesced 
access



OpenACC is not high level enough for this usecase.



What others* do …

1. Code Granularity 2. Memory Layout

Kernel fusion in backend 
➡ User needs to refine coarse kernels 

manually at first. 

➡ Difficult to manage across functions 
and modules in a deep call-tree

Stencil DSL abstraction in frontend 
➡ Rewrite of point-wise code necessary

[1] Shimokawabe T., Aoki T. and Onodera, N.: “High-productivity framework on GPU-rich supercomputers for operational 
weather prediction code ASUCA”, 2014 
[2] Fuhrer O. et al..: “Towards a performance portable, architecture agnostic implementation strategy for weather and climate 
models”, 2014

*



… and what we propose

1. Code Granularity 2. Memory Layout

Abstraction in frontend 
๏ We assume the number of parallel 

loop constructs to be small (ASUCA: 
200-300). 

➡ Rewrite of these structures is 
manageable.

Transformation in backend 
๏ Manual rewrite of memory access patterns 

is time consuming and error-prone.  

➡ We automate this process in backend. 

In case of ASUCA:  

1. Reordering of K-I-J to I-J-K 

2. Due to granularity change for physics: Auto-
privatization (I-J extension) of thread-local 
scalars and vertical arrays



→ Hybrid Fortan

• A language extension for Fortran 

• A code transformation for targeting GPU and multi-core CPU parallelizations with the same 
codebase; Produces CUDA Fortran, OpenACC and OpenMP parallel versions in backend. 

• Goal: Making GPU retargeting of existing Fortran code as productive as possible 

• Idea: Combine strengths of DSLs and Directives 

Main Advantages versus DSLs 

• No change of programming language necessary 

• Code with coarse parallelization granularity can easily be ported 

Main Advantages versus Directives (e.g. OpenACC) 

• Memory layout is abstracted —> Optimized layouts for GPUs and CPUs 

• No rewrite and/or code duplication necessary for code with coarse parallelization 
granularity

do i = 1, nx  
  do j = 1, ny  
    ! ..pointwise code..

@parallelRegion{  
  domName(i,j), domSize(nx,ny), appliesTo(CPU) 
}  
! ..pointwise code..

allows multiple 
parallelization granularitiesexplicit parallelization - 

orthogonal to sequential loops



simulation 
  for t ∈ [0,tend]:

routine

loop repeating  
.. statements .. 
for each x ∈ [a, b]

Legend

physics run 
  for j ∈ [1,ny]: 
    for i ∈ [1,nx]: 
     

shortwave rad. 
  for k ∈ [1,nz]: 
    .. pointwise process ..
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…
…

Example reference code from surface flux 

Data parallelism not exposed at this layer 

of code —> coarse grained parallelization

�� Michel Müller and Takayuki Aoki

This shows the specification of the local module data object dens_ptb_bnd
(density perturbation in the boundary layer) as well as the external module data
objects dens_ref_f (reference density) and dens_ptb_damp (density perturba-
tion in ASUCA grid).

The autoDom attribute is used to delegate the dimensions setup to the
data object specification parser (which gathers this information in a separate
pass from the source modules, here ref and svar), rather than having the user
specify the dimensions explicitly again in the @domainDependant construct.
The attributes accPP and domPP are employed to specify the macro names
used to implement the dimension ordering for accesses and specification parts,
respectively. These macros wrap all dimension lists in access expressions and
specifications of respective data objects in the generated code. When accPP and
domPP attributes are omitted, default macro names are used. In case of Listing
�.� we use explicit macro names for the dynamical core since the default macros
are already used with di�erent assumptions for the physical processes (see the
paragraph on “Dimensionality Changes” below).

Device Data Region Similarly to OpenACC, in Hybrid Fortran we implement
data regions by adding state attributes to data objects. The present attribute,
shown in Listing �.�, indicates that the respective objects are located on the
device in case of GPU compilation. Analogous transferHere attributes are used
in the main simulation routine in order to instruct Hybrid Fortran to implement
the memory copy operations to- and from the device, once at the beginning
and end of the simulation. For dummy variables with specified intent, Hybrid
Fortran will use the Fortran intent information to determine the correct copy
operation, which minimizes the potential for bugs in comparison to OpenACC’s
explicit copyIn, copyOut and copy clauses. Halo region updates, required for
every timestep, are implemented explicitly in code sections guarded from CPU
compilation.

Dimensionality Changes Due to the compile-time defined parallelization
granularity, discussed in Section �.�, it is necessary to modify the dimensionality
of data objects in certain cases in the source generation. This requires hints from
the framework user. Consider the following surface flux code snippet:

Listing �.�. Surface flux code snippet.
l t = t i l e _ l a n d
i f ( t l c v r ( l t ) > � .� _r_size ) then

c a l l s f_slab_flx_land_run(&
! . . . inputs and f u r t h e r t i l e v a r i a b l e s omitted
& taux_ti le_ex ( l t ) , tauy_ti le_ex ( l t ) &
& )

u_f ( l t ) = s q r t ( s q r t ( taux_ti le_ex ( l t ) ** � + tauy_ti le_ex ( l t ) ** �) )
e l s e

taux_ti le_ex ( l t ) = � .� _r_size
tauy_ti le_ex ( l t ) = � .� _r_size
! . . . f u r t h e r t i l e v a r i a b l e s omitted

end i f

Example



Example using Hybrid Fortran

simulation 
  for t ∈ [0,tend]:

routine

loop repeating  
.. statements .. 
for each x ∈ [a, b]

Legend

physics run 
     

shortwave rad. 

             for k ∈ [1,nz]: 
                 .. pw. proc.

surf. flux 

              .. pw. proc.

call

for x ∈ [a, b]: 
  .. statements ..

CPU

i,j ∈   
[1,nx], 
[1,ny]

GPU

i,j ∈   
[1,nx], 
[1,ny]

GPU

i,j ∈   
[1,nx], 
[1,ny]

p.b. phi calc 

              .. pw. proc.

GPU

i,j ∈   
[1,nx], 
[1,ny]

execute 
.. statements ..  
in parallel for each  
i,j ∈  [1,nx], [1,ny]  
if the executable is 
compiled for CPU. 
Otherwise run  
.. statements.. a single 
time.

CPU

i,j ∈   
[1,nx], 
[1,ny]

.. 
st

at
em

en
ts

 ..

…

…

dycore…
radiation

surface

planetary boundary

………

example code from surface flux  
using Hybrid Fortran 

Pointwise code can be reused as is - Hybrid 

Fortran rewrites this code automatically to apply 

fine grained parallelism by using the appliesTo 

clause and the global call graph.

Hybrid Fortran: High Productivity GPU Porting ��

! . . . s ea t i l e s code and v a r i a b l e summing omitted

Since this process is defined inside the call graph of the physics kernel, as
shown in Figure �, the relevant �D- and �D grid point values are already sliced
and passed in as scalars or �D-arrays, that is, data parallelism is not exposed
at this level. Hybrid Fortran allows implementing this as a fine grained kernel
(as outlined in Figure �) without modifying the computational user code, as
demonstrated in the following snippet:

Listing �.�. Surface flux code snippet with Hybrid Fortran.

@domainDependant{domName( i , j ) , domSize ( nx , ny ) , a t t r i b u t e (autoDom , pre sent ) }
t l c v r , taux_ti le_ex , tauy_ti le_ex , u_f
@end domainDependant

@ p ar a l l e lR eg i o n { appl ie sTo (GPU) , domName( i , j ) , domSize ( nx , ny ) }
l t = t i l e _ l a n d
i f ( t l c v r ( l t ) > � .� _r_size ) then

c a l l s f_slab_flx_land_run(&
! . . . inputs and f u r t h e r t i l e v a r i a b l e s omitted
& taux_ti le_ex ( l t ) , tauy_ti le_ex ( l t ) &
& )

u_f ( l t ) = s q r t ( s q r t ( taux_ti le_ex ( l t ) ** � + tauy_ti le_ex ( l t ) ** �) )
e l s e

taux_ti le_ex ( l t ) = � .� _r_size
tauy_ti le_ex ( l t ) = � .� _r_size
! . . . f u r t h e r t i l e v a r i a b l e s omitted

end i f
! . . . s ea t i l e s code and v a r i a b l e summing omitted
@end p a r a l l e l R e g i o n

Using our parallelization DSL to provide additional dimensionality informa-
tion, Hybrid Fortran is able to rewrite this code into a �D kernel. Dimensions
missing from the user code are inserted at the beginning of the dimension lists in
access expressions and data object specifications. As an example, the expression
u_f(lt) is converted to u_f(AT(i,j,lt)), employing the default ordering macro
already mentioned in the paragraph “Storage Order”. Dimensions are extended
whenever there is a match found for domName or domSize information between
data objects and parallel regions within the same routine or in routines called
within the call graph of the same routine. It is therefore necessary for Hybrid
Fortran to gather global information about the application before implementing
each routine.

� Code Transformation Method

In this section we discuss code transformation method involved in implementing
Hybrid Fortran’s characteristics described earlier. This process is applied trans-
parently for the user, i.e. it is applied automatically by the means of a provided
common Makefile�. Figure � gives an overview of the process and the components
� See also the “Getting Started” section in https://github.com/muellermichel/Hybrid-

Fortran/blob/v�.��rc��/doc/Documentation.pdf.



surface flux example including data specifications 

• autoDom —> extend existing data domain specification with parallel domain 

given by @domainDependant directive 

• present —> data is already present on device

Hybrid Fortran: High Productivity GPU Porting ��

! . . . s ea t i l e s code and v a r i a b l e summing omitted

Since this process is defined inside the call graph of the physics kernel, as
shown in Figure �, the relevant �D- and �D grid point values are already sliced
and passed in as scalars or �D-arrays, that is, data parallelism is not exposed
at this level. Hybrid Fortran allows implementing this as a fine grained kernel
(as outlined in Figure �) without modifying the computational user code, as
demonstrated in the following snippet:

Listing �.�. Surface flux code snippet with Hybrid Fortran.

@domainDependant{domName( i , j ) , domSize ( nx , ny ) , a t t r i b u t e (autoDom , pre sent ) }
t l c v r , taux_ti le_ex , tauy_ti le_ex , u_f
@end domainDependant

@ p a r a l l e l R eg i on { appl ie sTo (GPU) , domName( i , j ) , domSize ( nx , ny ) }
l t = t i l e _ l a n d
i f ( t l c v r ( l t ) > � .� _r_size ) then

c a l l s f_slab_flx_land_run(&
! . . . inputs and f u r t h e r t i l e v a r i a b l e s omitted
& taux_ti le_ex ( l t ) , tauy_ti le_ex ( l t ) &
& )

u_f ( l t ) = s q r t ( s q r t ( taux_ti le_ex ( l t ) ** � + tauy_ti le_ex ( l t ) ** �) )
e l s e

taux_ti le_ex ( l t ) = � .� _r_size
tauy_ti le_ex ( l t ) = � .� _r_size
! . . . f u r t h e r t i l e v a r i a b l e s omitted

end i f
! . . . s ea t i l e s code and v a r i a b l e summing omitted
@end p a r a l l e l R e g i o n

Using our parallelization DSL to provide additional dimensionality informa-
tion, Hybrid Fortran is able to rewrite this code into a �D kernel. Dimensions
missing from the user code are inserted at the beginning of the dimension lists in
access expressions and data object specifications. As an example, the expression
u_f(lt) is converted to u_f(AT(i,j,lt)), employing the default ordering macro
already mentioned in the paragraph “Storage Order”. Dimensions are extended
whenever there is a match found for domName or domSize information between
data objects and parallel regions within the same routine or in routines called
within the call graph of the same routine. It is therefore necessary for Hybrid
Fortran to gather global information about the application before implementing
each routine.

� Code Transformation Method

In this section we discuss code transformation method involved in implementing
Hybrid Fortran’s characteristics described earlier. This process is applied trans-
parently for the user, i.e. it is applied automatically by the means of a provided
common Makefile�. Figure � gives an overview of the process and the components
� See also the “Getting Started” section in https://github.com/muellermichel/Hybrid-

Fortran/blob/v�.��rc��/doc/Documentation.pdf.

Example using Hybrid Fortran



Code Transformation Process

1. Process macros in input 

2. Sanitize input 
deleting whitespace & comments, merging 
continued lines 

3. Parse global call graph (“parse”) 

4. Apply user-defined target-specific 
parallelization granularity to call 
graph (“analyze”) 

5. Parse module data specifications 

6. Link module data spec. to routines 
where data is imported 

7. Generate global application model 
intermediate representation, contains modules, 
routines and code regions, each linked with all 
relevant user code and meta information 

8. Transform code for target architecture 
(“transform”) 
implementation class per routine with hooks 
called for each detected pattern that requires 
transformation 

9. Sanitize output 
split lines that are too long for Fortran standard 

10. Process macros in output  
implementation of memory layout

maketransform

parse

F90	  

Hybrid Sources

global 
informatio

n

executable

analyze

F90	  implemented 
Fortran

Build Dependencies

Build Configuration

Macro Definitions

global information - applied 
to architecture

hybrid 
file

python

GNU Make

legend

file with  
CPU+GPU 
version

user facingoutput

input
machine 
facing



Analysis Step: CPU

simulation 
timestep

physics run 
    

shortwave rad.

surf. flux

p.b. phi calc

dycore
…

radiation

…
surface

planetary boundary

… …
…
…

routine

loop repeating  
.. statements .. 
for each x ∈ [a, b]

Legend
call

for x ∈ [a, b]: 
  .. statements ..



Analysis Step: CPU

simulation

physics run 
    

shortwave rad.

surf. flux

p.b. phi calc

dycore
…

radiation

…
surface

planetary boundary

… …
…
…

KO

I

I

I

routine

loop repeating  
.. statements .. 
for each x ∈ [a, b]

Legend

call

for x ∈ [a, b]: 
  .. statements ..

O “outside” —> routine 
calling kernel routines

K “kernel” routines

I “inside” —> routine 
called inside kernel



Analysis Step: GPU

simulation

physics run 
    

shortwave rad.

surf. flux

p.b. phi calc

dycore
…

radiation

…
surface

planetary boundary

… …
…
…

O

routine

loop repeating  
.. statements .. 
for each x ∈ [a, b]

Legend

call

for x ∈ [a, b]: 
  .. statements ..

O “outside” —> routine 
calling kernel routines

K

“kernel” routines

I “inside” —> routine 
called inside kernel

O

K

K

K



ASUCA: Productivity

Code Reuse and Changes Comparison with OpenACC Estimate



ASUCA: Performance

Strong scaling results 
on Reedbush-H, 
1581 x 1301 x 58 Grid 
(Japan and surrounding 
region)

Kernel performance on 
reduced Grid 
(301 x 301 x 58)

4.9x

3x

→

←



Hybrid Fortran on GitHub

21 Sample Codes 

LGPL License 

PDF Documentation



Conclusions

• A performant GPU port for a meso-scale 
weather prediction model has been 
achieved (physics + dynamics). 

• Using Hybrid Fortran, 85% of the ported 
code is a direct copy of the original - 
without counting whitespace, comments 
and line continuations. 

• Overall, the code size has grown by less 
than 4%. 

• A library of code examples has been 
constructed and Open Sourced together 
with Hybrid Fortran.


