Hybrid Fortran
High Productivity GPU Porting Framework
Applied to Japanese Weather Prediction Model

Michel Muller

supervised by
~ Takayuki Aoki

AOKI Lab.

Tokyo Institute of Technology

Outline

1. Motivation & Problem Description
2. Proposed Solution

3. Example & Application Status

4. Code Transformation

5. Performance- & Productivity Results

6. Conclusion

ASUCA

What is ASUCA? [6]

* Non-hydrostatic weather prediction

model
. 42N
* Main Japanese mesoscale weather
model, in production since end of 40N
!
* Dynamical + physical core 36N 18
* Regular grid: 3N
horizontal domain 1J, Nk

vertical domain K

* Mostly parallelizeable in 1), K is
mostly sequential

o -

123E 126E 129E 132 135 138E 141E 144E 147E

Goals of Hybrid ASUCA *20e

Cloud cover result with ASUCA using a 2km

* Performant GPU Implementation T
resolution grid and real world data

* Low code divergence

* Code as close to original as possible -
keep Fortran

[6] Kawano K., Ishida J. and Muroi C.: “Development of a New Nonhydrostatic Model ASUCA at JMA”, 2010 AOKI Lab.

Tokyo Institute of Technology

ASUCA... another point of view

* 155k LOC
» 338 kernels

* one lonely Fortran GPU programmer

T ‘ L,‘“ ,H‘:";', = ARRRR R RRR Y 1-‘[,: il y e "N s il i = i TIPY ,/"
I L L (1L LU LR L LD L I 1 rH il PVl LLL (TN IR
AN i NIV

AOKI Lab.

Tokyo Institute of Technology

ASUCA

shortwave rad.

physics run —» for k € [1,nz]:
stmmllation dycore for j € [1,ny]: .. pointwise process ..
for t € [0,tend]: — oo for i € [1,nx]:
radiation surf. flux
‘7 ’ > f.‘" g pointwise process ..
= S ® surtsce
planetary boundary p.b. phi calc

Legend ‘ P ceo—> pointwise process ..

routine .—} call

for x € [a, b]: loop repeating

statements .. statements ..

for each x € [a, b]

S

— Physics are hard to port. However, leaving them on CPU
requires Host-Device-Host data transfers for each timestep.

AOKI Lab.

Tokyo Institute of Technology

Focus Problems

1. Code Granularity 2. Memory Layout

Focus Problems

1. Code Granularity

Definition of granularity:

The amount of work done by one thread.

For our purposes, we distinguish
between two types of granularity:

a) runtime defined granularity

b) code defined granularity

shortwave rad.

physics run — for k € [1,DZ]:
simulation dycore for j € [1,ny]: .. pointwise process ..
for t € [0,tend]: — o for i € [1,nx]:

radiation surf. flux
‘7 ‘ P oo >

.. pointwise process ..
> surface
‘ > o000

planetary boundary p.b. phi calc
‘ oo .. pointwise process ..

Focus Problems

simulation

for t € [0,tend]:

dycore
_> XX

‘7

2. Memory Layout

* Regular grid = Fortran’s multi-dimensional
arrays offer a simple to use and efficient

data structure

« Performant layout on CPU: Keep fast
varying vertical domain in cache — k-first

Example stencil in original code:
A_out(k,i,j) = A(k,i,7) + A(k,i-1,j) .

« GPU: Requires i-first or j-first for coalesced

dCCess

physics run

for j € [1,ny]:
for i € [1,nx]:

radiation

shortwave rad.
—» for k € [1,nz]:
.. pointwise process ..

surf. flux

> (XX

surface

> LN J

.. pointwise process ..

planetary boundary p.b. phi calc

.. pointwise process ..

OpenACC is not high level enough for this usecase.

AOKI Lab.

Tokyo Institute of Technology

What others* do ...

1. Code Granularity 2. Memory Layout
Kernel fusion in backend Stencil DSL abstraction in frontend
= User needs to refine coarse kernels = Rewrite of point-wise code necessary

manually at first.

= Difficult to manage across functions
and modules in a deep call-tree

% [1] Shimokawabe T., Aoki T. and Onodera, N.: “High-productivity framework on GPU-rich supercomputers for operational
weather prediction code ASUCA”, 2014
[2] Fuhrer O. et al..: “Towards a performance portable, architecture agnostic implementation strategy for weather and climate
models”, 2014

AOKI Lab.

Tokyo Institute of Technology

... and what we propose

1. Code Granularity 2. Memory Layout
Abstraction in frontend Transformation in backend
® We assume the number of parallel @ Manual rewrite of memory access patterns
loop constructs to be small (ASUCA: is time consuming and error-prone.
200-300).

= \We automate this process in backend.

= Rewrite of these structures is

manageable.
In case of ASUCA:

1. Reordering of K-1-] to I-J-K

2. Due to granularity change for physics: Auto-
privatization (I-) extension) of thread-local
scalars and vertical arrays

AOKI Lab.

Tokyo Institute of Technology

— Hybrid Fortan

* A language extension for Fortran

* A code transformation for targeting GPU and multi-core CPU parallelizations with the same
codebase; Produces CUDA Fortran, OpenACC and OpenMP parallel versions in backend.

» Goal: Making GPU retargeting of existing Fortran code as productive as possible

* ldea: Combine strengths of DSLs and Directives

lici llelizati allows multiple
explicit paratielization - / parallelization granularities
1, nx orthogonal to sequential loops

i =

do j 1, ny @parallelRegion{

! ..pointwise code.. domName(i,j), domSize(nx,ny), appliesTo(CPU)
}

I ..pointwise code..

do

Main Advantages versus DSLs
* No change of programming language necessary

» Code with coarse parallelization granularity can easily be ported

Main Advantages versus Directives (e.g. OpenAC(C)
* Memory layout is abstracted —> Optimized layouts for GPUs and CPUs

* No rewrite and/or code duplication necessary for code with coarse parallelization
granularity

AOKI Lab.

Tokyo Institute of Technology

Example

simulation
for t € [0,tend]:

dycore
_> [X X]

‘7

Example reference code from surface flux

Data parallelism not exposed at this layer
of code —> coarse grained parallelization

Legend
(D
routine ‘_> call
for x € [a, b]: loop repeating
. statements .. - Statements ..
for each x € [a, b]
. y

shortwave rad.

physics run —» for k € [1,nz]:
for j € [1,ny]: .. pointwise process ..
for i € [1,nx]:
radiation surf. flux
. P oo > | pointwise process ..

surface
‘ » eoeo

‘ planetem_;y.-bo'ijﬁaary p.b. phi calc

> oo —m> pointwise process ..
Tt = tile__land

if (tlcvr(lt) > 0.0_r_size) then
call sf_slab_flx_land_run(&
' ... inputs and further tile variables omitted
& taux_ tile_ex(1lt), tauy_tile_ex(lt) &
&)

u_f(lt) = sqrt(sqrt(taux_tile_ex(lt) **x 2 + tauy_tile_ex(lt) *x 2))
else

taux_tile_ex(1lt) = 0.0_r_size

tauy_tile_ex(1lt) = 0.0_r_size

! ... further tile variables omitted
end if

AOKI Lab.

Tokyo Institute of Technology

ije forke [lnz]:

Example using Hybrid Fortran “

[1,nx], .. PW. proc.
Legend 1,ny]
routine ._> call simulation
for t € [0,tend]: dycore
for x € [a, b: loop repeating
.. statements statements .. . > LX) surf. flux
for each x € [a, b]
‘ ije . pw. proc.
execute 1
ﬁ statements [nx :
ivj € é in parallel fOI‘ each physics run . 1 ny H
lnx], & ije [1,nx], [1,ny] radiation
[1,ny] % if the executable is .—> °0 0 ‘
: compiled for . Lj € su,f-face
Otherwise run [1,nx], — L X S p-b. phi calc
.. statements.. a single —> [1 ny p]anetary boundary
time. — (X 0 ije .. pw. proc.
[1,nx],
[1,ny]

@}')'arallelR.egion{appliesTo(GPU) , domName(i,j), domSize(nx,ny)}
example code from surface flux It = tile_land
if (tlcvr(lt) > 0.0__r_size) then
: H call sf_slab_flx_land_run(&
USIng Hybrld Fortran ! ... Inputs and further tile variables omitted
& taux_tile_ex(1lt), tauy_tile_ex(lt) &

Pointwise code can be reused as is - Hybrid &)

Fortran rewrites this code automatically to apply | uw_f(1t) = sqrt(sqrt(taux_tile_ex(1lt) ** 2 + tauy_tile_ex(lt) ** 2))

else

H H H H : taux__tile_ex(1lt) = 0.0_r_size
fine grained parallelism by using the appliesTo tany tile ex(1t) = 0.0 s sice
! ... further tile variables omitted
clause and the global call graph. ond it

' ... sea tiles code and variable summing omitted
@end parallelRegion

AOKI Lab.

Tokyo Institute of Technology

Example using Hybrid Fortran

surface flux example including data specifications

* autoDom —> extend existing data domain specification with parallel domain

given by @domainDependant directive

* present —> data is already present on device

@domainDependant {domName(i,j), domSize(nx,ny), attribute (autoDom, present)}’
tlcvr , taux_ tile__ex, tauy_tile_ex, u_f
@end domainDependant

@parallelRegion{appliesTo (GPU), domName(i,j), domSize(nx,ny)}
1t = tile__land
if (tlecvr(lt) > 0.0 __r_ size) then
call sf_slab_flx_land_run(&
I' ... inputs and further tile variables omitted
& taux_tile_ex(lt), tauy_tile_ex(lt) &
&)

u_f(lt) = sqrt(sqrt(taux_tile_ex(lt) **x 2 + tauy_tile_ex(1lt) *x 2))

else
taux__tile_ex(1lt) = 0.0_r_size
tauy_tile_ex(1t) = 0.0_r_size
' ... further tile variables omitted
end if

I' ... sea tiles code and variable summing omitted
@end parallelRegion

AOKI Lab.

Tokyo Institute of Technology

Code Transformation Process

- hybrid - file with python @ output 8 user facing
file CP[.H_GPU =ﬁ= machine
version @ GNU Make @ input M facing 1. Process macros in input
legend 2. Sanitize input

deleting whitespace & comments, merging
continued lines

Parse global call graph (“parse”)

Apply user-defined target-specific
parallelization granularity to call

global graph (“analyze”)
informatio
n . Parse module data specifications

Link module data spec. to routines
where data is imported

global information - applied

Lo igitecture . Generate global application model
intermediate representation, contains modules,
routines and code regions, each linked with all

Hybrid Sources

implemented relevant user code and meta information
Fortran
Build Configuration . Transform code for target architecture
(“transform”)
. , implementation class per routine with hooks
Build Dependencies called for each detected pattern that requires

transformation

Macro Definitions

Sanitize output
split lines that are too long for Fortran standard

10. Process macros in output
implementation of memory layout

AOKI Lab.

Tokyo Institute of Technology

Analysis Step: CPU

dycore
simulation .—> }: -
timestep ‘ S

physics run

radiation

Legend

[D
routine ‘_> call
for x € [a, b]: loop repeating
. staterr’lents 3 .. statements ..
for each x € [a, b]
. y
» shortwave rad.

P oo

surface
> [N N)

planetary boundary

> ooo_>

surf. flux

p.b. phi calc

AOKI Lab.

Tokyo Institute of Technology

Analysis Step: CPU

: : dycore
simulation .—> vee
o ® S

physics run

K

Legend

,
. “outside” —> routine
routine call
calling kernel routines
for x € [a, b]: loop repeating K “kernel” routines
.. statements .. - Statements .. “inside” —> routine
for each x € [a, bl I called inside kernel
\
— shortwave rad. I
radiation surf. flux I
P oo
surface
> XX
planetary boundary
P eece—> 1 b. phi calc I

AOKI Lab.

Tokyo Institute of Technology

Legend

°) [“ : b2 H .
Analysis Step: GPU B
calling kernel routines
for x € [a, b loop repeating K “kernel” routines
.. statements .. - Statements .. “inside” —> routine
for each x € [a, bl I called inside kernel
\)
—» shortwave rad. K
physics run
dycore radiation surf. flux K
simulation ‘_’ vee ’ P> coe
surface
0 @ . 0 g i
planetary boundary
‘ » ece—> pb. phicalc K

AOKI Lab.

Tokyo Institute of Technology

ASUCA: Productivity

Code Reuse and Changes Comparison with OpenACC Estimate
30000
added code 95000 i
‘ 15
whitespace, 4 U 20000
comments, L T O L
line cont.\ S C
o 15000+
9] 59k :
,[j — C T
) n 10000 F oo
i} .
) ; < - N
O 91k> a » .
8 chU i 5000 |
o 91k a o R 1| i
4 = T L R DR
cf':,) o= .| Hybrid ASUCA OpenACC Estimate
64k [0 CPU-only physics 0 7122
A [Fl storage order macros 116 6098
hit)
Lol . zorizle)i‘i:, B parallelization & data layout DSL 4398 2621
ine cont: B long-wave radiation 2059 2059
removed code Emodified data spec./init 3519 3519
@routine & call signatures 1381 1381
[other 3046 2884

AOKI Lab.

Tokyo Institute of Technology

800.0 ¢
. @ 700.0 E[7
ASUCA: Performance e w0t 7 o
= 500.0 E / :
g 400.0 E /
o E
o 300.0 / 3X
Kernel performance on § 200.0 E /
reduced Grid —) i 108'8 7
(301 x 301 x 58) ' 301 x 301 x 58 Grid
4 ASUCA Reference, 4 x 6-core Xeon X5670 734.0
(3 ASUCA Reference, 1 x 18-core Xeon E5-2695 v4 456.7
@ Hybrid ASUCA, 4 x Tesla K20x 148.9
[Hybrid ASUCA, 1 x Tesla P100 151.1
4 [T]
y Strong scaling results
3.5 r . on Reedbush-H,
i] 1581 x 1301 x 58 Grid
3 ¢ . (Japan and surrounding
I i region)
2.5 | .
B T 48N 1
g i]
L i 45N 1
s 2 f . »
g, i) 42N1
n i 4
i] 39N
1.5 ¢] 36N
: : 33N 1
C —/x—Hybrid Code, h
1 30N A
i Tesla P100]
L 4 27N
0.5 F ——Reference Code,] 24N
i 18 Core Xeon E5-2695 v4 | 1 -
0 X e e] 110 115 120 125 130E 135€ 140E 145 150E 155E
10 20 30 40 50 60
AOKI Lab.

#Sockets or #GPUs Tokyo Institute of Technology

Hybrid Fortran on GitHub

£l muellermichel / Hybrid-Fortran © Unwatch ~ 15 * Unstar 70 ¥ Fork 12
<> Code Issues 37 Pull requests 0 Projects 0 Wiki Insights Settings
Branch: master - Hybrid-Fortran / examples / Overview.md Find file Copy path
{8 muellermichel cleaning house in hf directory a5dc235 on Jan 28, 2016

1 contributor

21 Sample COdes 258 lines (252 sloc) 10 KB Raw Blame History o » @

Samples Overview

LGPL License

See also the results overview.

P D F D . Characteristics
Name Main Characteristics / Demonstrated Features
aD Diffusion Memory Bandwidth bounded stencil code, full time integration on device.
Uses Pointers for device memory swap between timesteps.
Computationally bounded, full time integration on device. Uses Pointers for
Particle Push device memory swap between timesteps. Demonstrates high speedup for

Poisson on FEM
Solver with
Jacobi
Approximation

MIDACO Ant
Colony Solver
with MINLP
Example

Simple Stencil
Example

Stencil With
Local Array
Example

Stencil With
Passed In
Scalar From
Array Example

Parallel Vector
and Reduction
Example

Simple
OpenACC
Exambple

trigonometric functions on GPU.

Memory bandwidth bounded Jacobi stencil code in a complete solver setup
with multiple kernels. Reduction using GPU compatible BLAS calls. Uses
Pointers for device memory swap between iterations.

Heavily computationally bounded problem function, parallelized on two
levels for optimal distribution on both CPU and GPU. Automatic privatization
of 1D code to 3D version for GPU parallelization. Data is copied between
host and device for every iteration (solver currently only running on CPU).

Stencil code.

Stencil code with local array. Tests Hybrid Fortran's array reshaping in
conjunction with stencil codes.

Stencil code with a scalar input that's being passed in as a single value from
an array in the wrapper.

Separate parallelizations for CPU/GPU with unified codebase, parallel vector
calculations without communication. Automatic privatization of 1D code to
3D version for GPU parallelization. Shows a reduction as well.

Based on Parallel Vector Example, shows off the OpenACC backend and
using multiple parallel regions in one subroutine.

AOKI Lab.

Tokyo Institute of Technology

Conclusions

* A performant GPU port for a meso-scale
weather prediction model has been
achieved (physics + dynamics).

* Using Hybrid Fortran, 85% of the ported
code is a direct copy of the original -
without counting whitespace, comments
and line continuations.

* Overall, the code size has grown by less
than 4%.

* A library of code examples has been
constructed and Open Sourced together
with Hybrid Fortran.

