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• CUDA, OpenCL: APIs
- low-level
- full control

• OpenMP, OpenACC: based on pragmas
- ease of use
- some abstractions

Agenda of this talk
1. Asynchronous Offloading Capabilities of Accelerator Models
2. Kernel used for evaluation: Conjugate Gradient Method
3. Findings on NVIDIA GPU
4. Findings on Intel Xeon Phi Coprocessor
5. Summary

Motivation & Agenda

Asynchronous Offloading: are high-level models inferior to low-level APIs?



Asynchronous Offloading Capabilities of Accelerator Models
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Comparison of CUDA, OpenCL, OpenACC and OpenMP

CUDA OpenCL OpenACC OpenMP
Asynchronicity streams: actions in

different streams 
can execute 
concurrently

command queues: 
operations in 
different queues can 
execute concurrently

Clause: async with 
option argument to 
select a queue;
synchronization via 
acc wait construct

Clause: nowait
because the 
target construct is 
a task;
synchronization via 
taskwait constr.

Unstructured data 
movement

Yes: implicitly Yes: implicitly acc enter/exit
data construct

target 
enter/exit data 
construct

Asynchronous
memory transfer

API: 
cudaMemcpyAsync

Argument:
blocking_write

Clause: async Clause: nowait

Page-locked 
memory

API: 
cudaMallocHost

No, but shared 
virtual memory

- -
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• Total runtime consists of computation and communication:

• Communication time: Prediction for data d with bandwidth B:

• toverhead accounts for preparational tasks
- may be significant for the overall communication time tcomm
- may depend on data volume d

Offloading to multiple devices (1/2)

Performance Projection without Overlapping

Hahnfeld, Cramer, Klemm, Terboven,
Müller: A Pattern for Overlapping
Communication and Computation with
OpenMP Target Directives. IWOMP 2017.
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• Optimal runtime when overlapping
computation and communication:

• Maximum optimization over runtime without overlapping:

• Approximates a performance increase of omax = 0.5
- if communication and computation time are perfectly balanced

Offloading to multiple devices (2/2)

Performance Projection with Pipelining Pattern

Hahnfeld, Cramer, Klemm, Terboven,
Müller: A Pattern for Overlapping
Communication and Computation with
OpenMP Target Directives. IWOMP 2017.
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• Using standalone directives from OpenMP 4.5
- omp target enter data
- omp target exit data

• Aynchronous tasks (nowait) and specify dependencies

• Black lines: data dependency

• Red and blue lines: mutual exclusion
- of enter and compute tasks
- avoid oversubscription

Pipelining Concept for Overlapping Communication

Implementation with OpenMP 4.5



Kernel used for evaluation: Conjugate Gradient Method
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• Iterative solver for linear equation systems:
- A * x = k
- widely used for PDE-based problems

• Sparse matrix with regular sparsity pattern: Serena from SuiteSparse Matrix Collection
- Matrx is spd
- about 1.4 mio. rows and columns
- about 780 MB memory consumption in CRS format on host and Xeon Phi
- about 6.14 GB memory consumption in ELLPACK-R format on GPU

• Division of matrix and each vector into partitions

• Matrix vector multiplication requires data exchange
- Start computation with local data
- Apply pipelining concept for data transfer

Evaluation kernel: CG Method (1/3)

Conjugate Gradients Method on Multiple Devices
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Evaluation kernel: CG Method (2/3)

Concept for executing kernels on multiple devices

local

remote
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Evaluation kernel: CG Method (3/3)

Dependencies for overlapping the communication with two devices

(1) The ability to express this algorithm with a given offloading 
programming model gives insight on expressiveness.

(2) The performance of the result gives insight into the quality 
of the implementation.



Findings on NVIDIA GPU
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• NEC GPU server system
- 2 NVIDIA Tesla P100, each:

§ 5.3 TFLOP/s dp performance
§ 549 GB/s Triad bandwidth to HBM2 measured with BabelStream
§ 13.2 GB/s achievable transfer rate to host via PCIe

- NVLink between the GPUs
§ 37 GB/s achievable transfer rate between GPUs

- 2 Intel Westmere-EP 12-core processors at 2.2 GHz
§ 120 GB/s Triad bandwidth to DDR4 measured with Stream

Evaluation System

Technical Specification



Evaluation of Asynchronous Offloading Capabilities |  Dr. Christian Terboven  |  I12-HPC & IT Center of RWTH Aachen University14

• DMA: Direct Memory Access
- Only possible with memory that is ”page-locked” or “pinned”

§ Necessity for device data transfers
§ By default CUDA (et al.) do a transparent copy
§ In addition, special allocation methods are available

• Size of x vector chunks:
5.6 MB

• No explanation for the
drop after 32 MB

• CUDA and OpenACC on par
pocl about 10% below

Data Transfer with Host

Basis for performance model
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• Initial evaluation on the host and on a single NVIDIA Tesla P100
- Host: Intel C++ 17.0.4 compiler w/ OpenMP

• Offloading to the GPU pays off (timings include data transfer)

• Number of iterations varies because of reduction operating in vector dot product

• CUDA is fastest
- Compiler generates better code with added pragma unroll 1

Results with a single GPU

Basis for evaluation
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• Via host: utilization of PCIe in two successive transfers
- Plus a temporary buffer on the host

• Between devices: direct communication between devices
- cudaMemcpyAsync with kind cudaMemcpyDeviceToDevice
- Will use PCIe by default
- Runtime may employ double buffering, or other optimizations

• Peer to peer: utilization of the NVLink
- cudaDeviceEnablePeerAccess on both devices for unidirectional access

CUDA

Options to implement data exchange between devices
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• Performance model prediction: up to 46.91 % optimization
- Requires two CUDA streams per device: computation & communication

• Remember (3): optimization effect depends on max of tcomp and tcomm
- Utilizing NVLink reduces the communication time

• Smaller improvement for whole CG as partitioning takes extra time: 5.15s to 4.26s in best case

CUDA Results (matvec only)
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• NVIDIA‘s own OpenCL …
- ... does not support page-locked memory
- ... has a performance bug in the device to device copy

• Therefore we switched to pocl (OpenCL 2.0 implementation)
- ... and made some improvements which will become available with next release

OpenCL

Quality of the implementation
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• Performance model prediction: up to 44.34 % optimization
- Requires two OpenCL command queues per device: computation & communication

OpenCL Results (matvec only)
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• Performance model prediction: up to 44.05 % optimization

• OpenACC currrently does not allow transfer between two devices without involving the host

• Data transfer time increases
- PGI‘s implementation cannot transfer matrix from pageable memory asynchronously
- Issues with the runtime prevented from using threads to parallelize data transfer

OpenACC Results (matvec only) (1/2)
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OpenACC Results (2/2)

Not successful considering the total runtime



Findings on the Intel Xeon Phi Coprocessor
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• Bull server system
- 2 Intel Xeon Phi 5110P coprocessors, each:

§ approx. 1 TFLOP/s dp performance
§ 117 GB/s Triad bandwidth to HBM measured with Stream
§ 6.5 GB/s achievable transfer rate to host via PCIe (gen2)

- 2 Intel SandyBridge-EP 8-core processors at 2.0 GHz
§ 65 GB/s Triad bandwidth to DDR4 measured with Stream

• Software
- Intel 17.0.2 compilers

§ 17.0.4 contains a performance bug
- Intel MPSS 3.8
- Intel OpenCL SDK 14.2

Evaluation System

Technical Specification
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OpenMP Results

Not successful considering the total runtime

• Very high overhead for 
launching the kernels

• Intel 16.0.x compilers show 
better performance …

• ... but do not provide
asynchronous offloading



Summary
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• Asynchronous offloading to multiple devices can deliver the expected performance improvements

• CUDA is perfectly up to the task

• OpenCL 2.0 provides all the necessary ingredients

• OpenACC can be successful
- Currently, device to device support is missing
- Issues with the quality of the implementation

• Intel Xeon Phi
- Implementation issues lead to bad results for OpenMP
- GCC 7, IBM xlc and LLVM/Clang compilers will soon fully support OpenMP on GPUs

• Programming is challenging: asynchronous offload pattern may ease implementation work

• Code is available at: https://rwth-aachen.sciebo.de/index.php/s/EdjjkEdClHLizyE

Summary

Evaluation of asynchronous offloading
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