
Evaluation of Asynchronous Offloading Capabilities of
Accelerator Programming Models for Multiple Devices
Jonas Hahnfeld1, Christian Terboven1, James Price2, Hans Joachim Pflug1, Matthias S. Müller1

1: RWTH Aachen University, Germany, email: {hahnfeld,terboven,pflug,mueller}@itc.rwth-aachen.de
2: University of Bristol, UK, email: j.price@bristol.ac.uk

WACCP 2017: Fourth Workshop on Accelerator Programming Using Directives
Nov. 13th, 2017

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University2

• CUDA, OpenCL: APIs
- low-level
- full control

• OpenMP, OpenACC: based on pragmas
- ease of use
- some abstractions

Agenda of this talk
1. Asynchronous Offloading Capabilities of Accelerator Models
2. Kernel used for evaluation: Conjugate Gradient Method
3. Findings on NVIDIA GPU
4. Findings on Intel Xeon Phi Coprocessor
5. Summary

Motivation & Agenda

Asynchronous Offloading: are high-level models inferior to low-level APIs?

Asynchronous Offloading Capabilities of Accelerator Models

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University4

Comparison of CUDA, OpenCL, OpenACC and OpenMP

CUDA OpenCL OpenACC OpenMP
Asynchronicity streams: actions in

different streams
can execute
concurrently

command queues:
operations in
different queues can
execute concurrently

Clause: async with
option argument to
select a queue;
synchronization via
acc wait construct

Clause: nowait
because the
target construct is
a task;
synchronization via
taskwait constr.

Unstructured data
movement

Yes: implicitly Yes: implicitly acc enter/exit
data construct

target
enter/exit data
construct

Asynchronous
memory transfer

API:
cudaMemcpyAsync

Argument:
blocking_write

Clause: async Clause: nowait

Page-locked
memory

API:
cudaMallocHost

No, but shared
virtual memory

- -

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University5

• Total runtime consists of computation and communication:

• Communication time: Prediction for data d with bandwidth B:

• toverhead accounts for preparational tasks
- may be significant for the overall communication time tcomm
- may depend on data volume d

Offloading to multiple devices (1/2)

Performance Projection without Overlapping

Hahnfeld, Cramer, Klemm, Terboven,
Müller: A Pattern for Overlapping
Communication and Computation with
OpenMP Target Directives. IWOMP 2017.

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University6

• Optimal runtime when overlapping
computation and communication:

• Maximum optimization over runtime without overlapping:

• Approximates a performance increase of omax = 0.5
- if communication and computation time are perfectly balanced

Offloading to multiple devices (2/2)

Performance Projection with Pipelining Pattern

Hahnfeld, Cramer, Klemm, Terboven,
Müller: A Pattern for Overlapping
Communication and Computation with
OpenMP Target Directives. IWOMP 2017.

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University7

• Using standalone directives from OpenMP 4.5
- omp target enter data
- omp target exit data

• Aynchronous tasks (nowait) and specify dependencies

• Black lines: data dependency

• Red and blue lines: mutual exclusion
- of enter and compute tasks
- avoid oversubscription

Pipelining Concept for Overlapping Communication

Implementation with OpenMP 4.5

Kernel used for evaluation: Conjugate Gradient Method

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University9

• Iterative solver for linear equation systems:
- A * x = k
- widely used for PDE-based problems

• Sparse matrix with regular sparsity pattern: Serena from SuiteSparse Matrix Collection
- Matrx is spd
- about 1.4 mio. rows and columns
- about 780 MB memory consumption in CRS format on host and Xeon Phi
- about 6.14 GB memory consumption in ELLPACK-R format on GPU

• Division of matrix and each vector into partitions

• Matrix vector multiplication requires data exchange
- Start computation with local data
- Apply pipelining concept for data transfer

Evaluation kernel: CG Method (1/3)

Conjugate Gradients Method on Multiple Devices

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University10

Evaluation kernel: CG Method (2/3)

Concept for executing kernels on multiple devices

local

remote

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University11

Evaluation kernel: CG Method (3/3)

Dependencies for overlapping the communication with two devices

(1) The ability to express this algorithm with a given offloading
programming model gives insight on expressiveness.

(2) The performance of the result gives insight into the quality
of the implementation.

Findings on NVIDIA GPU

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University13

• NEC GPU server system
- 2 NVIDIA Tesla P100, each:

§ 5.3 TFLOP/s dp performance
§ 549 GB/s Triad bandwidth to HBM2 measured with BabelStream
§ 13.2 GB/s achievable transfer rate to host via PCIe

- NVLink between the GPUs
§ 37 GB/s achievable transfer rate between GPUs

- 2 Intel Westmere-EP 12-core processors at 2.2 GHz
§ 120 GB/s Triad bandwidth to DDR4 measured with Stream

Evaluation System

Technical Specification

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University14

• DMA: Direct Memory Access
- Only possible with memory that is ”page-locked” or “pinned”

§ Necessity for device data transfers
§ By default CUDA (et al.) do a transparent copy
§ In addition, special allocation methods are available

• Size of x vector chunks:
5.6 MB

• No explanation for the
drop after 32 MB

• CUDA and OpenACC on par
pocl about 10% below

Data Transfer with Host

Basis for performance model

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University15

• Initial evaluation on the host and on a single NVIDIA Tesla P100
- Host: Intel C++ 17.0.4 compiler w/ OpenMP

• Offloading to the GPU pays off (timings include data transfer)

• Number of iterations varies because of reduction operating in vector dot product

• CUDA is fastest
- Compiler generates better code with added pragma unroll 1

Results with a single GPU

Basis for evaluation

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University16

• Via host: utilization of PCIe in two successive transfers
- Plus a temporary buffer on the host

• Between devices: direct communication between devices
- cudaMemcpyAsync with kind cudaMemcpyDeviceToDevice
- Will use PCIe by default
- Runtime may employ double buffering, or other optimizations

• Peer to peer: utilization of the NVLink
- cudaDeviceEnablePeerAccess on both devices for unidirectional access

CUDA

Options to implement data exchange between devices

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University17

• Performance model prediction: up to 46.91 % optimization
- Requires two CUDA streams per device: computation & communication

• Remember (3): optimization effect depends on max of tcomp and tcomm
- Utilizing NVLink reduces the communication time

• Smaller improvement for whole CG as partitioning takes extra time: 5.15s to 4.26s in best case

CUDA Results (matvec only)

0

0,5

1

1,5

2

2,5

Reference	(1	
GPU)

Naive	(2	GPUs):	
host

Naive	(2	GPUs):	
device

Naive	(2	GPUs):	
p2p

Overlapping	(2	
GPUs):	host

Overlapping	(2	
GPUs):	device

Overlapping	(2	
GPUs):	p2p

Ru
nt
im

e	
[s
ec
]

matvec

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University18

• NVIDIA‘s own OpenCL …
- ... does not support page-locked memory
- ... has a performance bug in the device to device copy

• Therefore we switched to pocl (OpenCL 2.0 implementation)
- ... and made some improvements which will become available with next release

OpenCL

Quality of the implementation

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University19

• Performance model prediction: up to 44.34 % optimization
- Requires two OpenCL command queues per device: computation & communication

OpenCL Results (matvec only)

0

0,5

1

1,5

2

2,5

Reference	(1	GPU) Naive	(2	GPUs):	host Naive	(2	GPUs):	device Overlapping	(2	GPUs):	
host

Overlapping	(2	GPUs):	
device

Ru
nt
im

e	
[s
ec
]

matvec

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University20

• Performance model prediction: up to 44.05 % optimization

• OpenACC currrently does not allow transfer between two devices without involving the host

• Data transfer time increases
- PGI‘s implementation cannot transfer matrix from pageable memory asynchronously
- Issues with the runtime prevented from using threads to parallelize data transfer

OpenACC Results (matvec only) (1/2)

0

0,5

1

1,5

2

2,5

Reference	(1	GPU) Naive	(2	GPUs) Overlapping	(2	GPUs)

Ru
nt
im

e	
[s
ec
]

matvec

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University21

OpenACC Results (2/2)

Not successful considering the total runtime

Findings on the Intel Xeon Phi Coprocessor

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University23

• Bull server system
- 2 Intel Xeon Phi 5110P coprocessors, each:

§ approx. 1 TFLOP/s dp performance
§ 117 GB/s Triad bandwidth to HBM measured with Stream
§ 6.5 GB/s achievable transfer rate to host via PCIe (gen2)

- 2 Intel SandyBridge-EP 8-core processors at 2.0 GHz
§ 65 GB/s Triad bandwidth to DDR4 measured with Stream

• Software
- Intel 17.0.2 compilers

§ 17.0.4 contains a performance bug
- Intel MPSS 3.8
- Intel OpenCL SDK 14.2

Evaluation System

Technical Specification

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University24

OpenMP Results

Not successful considering the total runtime

• Very high overhead for
launching the kernels

• Intel 16.0.x compilers show
better performance …

• ... but do not provide
asynchronous offloading

Summary

Evaluation of Asynchronous Offloading Capabilities | Dr. Christian Terboven | I12-HPC & IT Center of RWTH Aachen University26

• Asynchronous offloading to multiple devices can deliver the expected performance improvements

• CUDA is perfectly up to the task

• OpenCL 2.0 provides all the necessary ingredients

• OpenACC can be successful
- Currently, device to device support is missing
- Issues with the quality of the implementation

• Intel Xeon Phi
- Implementation issues lead to bad results for OpenMP
- GCC 7, IBM xlc and LLVM/Clang compilers will soon fully support OpenMP on GPUs

• Programming is challenging: asynchronous offload pattern may ease implementation work

• Code is available at: https://rwth-aachen.sciebo.de/index.php/s/EdjjkEdClHLizyE

Summary

Evaluation of asynchronous offloading

Vielen Dank
für Ihre Aufmerksamkeit

Thank you
for your attention

