
A Portable, High-Level Graph Analytics Framework
Targeting Distributed, Heterogeneous Systems

Robert Searles*, Stephen Herbein*, and Sunita Chandrasekaran

November 14, 2016



Motivation

I HPC and Big Data communities are converging
I Heterogeneous and distributed systems are becoming

increasingly more common
I Distributing data and leveraging specialized hardware (e.g.

accelerators) is critical
I Graph analytics are important to both communities



Goal

I Develop a portable, high-level framework for programming
current and future HPC systems that:

I Distributes data automatically
I Utilize heterogeneous hardware

I Accelerate two real-world graph analytics applications
I Demonstrate portability by running on a variety of hardware,

including multi-core Intel CPUs, NVIDIA GPUs, and AMD
GPUs



Our Framework: Spark + X
Sp

ar
k

“X”CPU GPU

“X”CPU GPU

“X”CPU GPU

I Utilize the MapReduce
framework, Spark, to handle
data and task distribution

I Automatic data/task
distribution

I Fault-tolerant
I Minimal programmer

overhead
I Leverage heterogeneous

resources to compute the tasks
local to each node

I Accelerators and other
emerging trends in HPC
technology



Case Study Applications

I Fast Subtree Kernel (FSK)
I Call graph similarity analysis

I Program characterization
I Malware analysis

I Triangle enumeration
I Spam detection
I Web link recommendation
I Social network analysis



What is FSK?

I Compute-bound graph kernel
I Measures the similarity of graphs in a dataset
I A graph is represented by a list of feature vectors

I Each feature vector represents a subtree

Binaries

FSK

Program CharacterizationCall Graphs

SVM

Similarity Matrix

Decomp



FSK in our framework
I Spark Component

I Split up pairwise graph comparisons
I Local Component

I For each pair of graphs
I Compare all feature vectors

Spark

Call Graphs

Compare

Compare

Compare



What is Triangle Enumeration?

I Data-bound graph operation
I Finds all cycles of size 3 (AKA triangles) within a graph

0

1

2 3

4

5

Figure: This graph contains 2 triangles (highlighted in red).



Triangle Enumeration in our framework

I Spark Component
I Partition the graph
I Distribute the

vertices/edges across
the cluster

I Local Component
I Count triangles within

each subgraph
I Done using

matrix-matrix
multiplication (BLAS)

I Spark Component
I Count triangles

between subgraphs



Hardware/Software

Fast Subtree Kernel
I Software

I PySpark
I PyOpenCL

I Hardware: AMD GPU
I Fury X

Triangle Enumeration

I Software
I PySpark
I ScikitCUDA

I Hardware: NVIDIA GPUs
I GTX 470
I GTX 970
I Tesla K20c



FSK Results - Single-Node Parallelism

1.02 1.42
1.13

1.18

0

10000

20000

30000

40000

10 100 500 1000

Ru
nt
im
e	
(in
	se

co
nd
s)

Dataset	Size

Call	Graph	Similarity	- Single	Node	Performance

CPU	Runtime CPU	Runtime	(8	threads) GPU	Runtime

I Single node runtimes (Single thread, 8 thread, and GPU)



FSK Results - Multi-Node Scalability

0.62 3.07

2.99

3.13

0

2000

4000

6000

8000

10000

12000

10 100 500 1000

Ru
nt
im
e	
(in
	se

co
nd
s)

Dataset	Size

Call	Graph	Similarity	- Single	Node	vs.	Multi	Node

Single-Node	CPU Multi-Node	CPU	(3	nodes)

I Multiple node runtimes (CPU saturated on all nodes)



Triangle Enumeration - Optimizing Data Movement

I Runtime of Spark component for Triangle Enumeration with a
variable number of partitions for Erdos-Renyi random graphs
with differing densities

Sparse graphs (P=.001)

0.00
2.00
4.00
6.00
8.00

10.00
12.00

36 72 144

Gl
ob
al
	T
im
e	
(S
ec
on
ds
)

Number	of	Spark	Partitions

Global	Time	vs.	Number	of	Partitions	for
3	Configurations	(N=5000,	P=.001)

CPU GPU-1	Executor GPU-4	Executors

I Fewer partitions allows for
more triangles to be counted
locally

Denser graphs (P=.05)

0.00
50.00
100.00
150.00
200.00
250.00
300.00
350.00

36 72 144

Gl
ob
al
	T
im
e	
(S
ec
on
ds
)

Number	of	Spark	Partitions

Global	Time	vs.	Number	of	Partitions	for
3	Configurations	(N=5000,	P=.05)

CPU GPU-1	Executor GPU-4	Executors

I More partitions means
oversubscription of the GPU

I Overlaps communication
with computation



Triangle Enumeration - Optimizing Local Computation
I Performance of the local component of Triangle Enumeration

on the CPU and GPU for graphs of varying size and density

GPU (ScikitCUDA)

Graph Size
 (N

odes)

1000
2000

3000
4000

5000
6000

7000

Graph Density 0.00

0.01

0.02

0.03

0.04
0.05

R
u

n
 T

im
e
 (s

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

CPU (Scipy)

Graph Size
 (N

odes)

1000
2000

3000
4000

5000
6000

7000

Graph Density 0.00

0.01

0.02

0.03

0.04
0.05

R
u

n
 T

im
e
 (s

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

I Running on the GPU is preferred unless the
graph is sparse (density < .01), then running on
the CPU is preferred



Conclusion

I FSK
I Linear Scaling
I GPU outperforms CPU
I Free load balancing with Spark

I Triangle Enumeration
I Optimize data movement by changing the number of Spark

partitions
I Improve local performance by choosing where to execute tasks

I Our high-level framework
I Demonstrated portability using a variety of hardware



Future Work

I Additional case-study application
I Spike neural network training
I Detecting common subgraphs within neural networks

I Additional tests
I Scalability test on a large-scale homogenous cluster
I Add latest Nvidia GPUs (K40/80) to our heterogenous cluster



Reproducibility

I All data and code on GitHub
I https://github.com/rsearles35/WACCPD-2016

https://github.com/rsearles35/WACCPD-2016

