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Motivation

I HPC and Big Data communities are converging
I Heterogeneous and distributed systems are becoming

increasingly more common
I Distributing data and leveraging specialized hardware (e.g.

accelerators) is critical
I Graph analytics are important to both communities



Goal

I Develop a portable, high-level framework for programming
current and future HPC systems that:

I Distributes data automatically
I Utilize heterogeneous hardware

I Accelerate two real-world graph analytics applications
I Demonstrate portability by running on a variety of hardware,

including multi-core Intel CPUs, NVIDIA GPUs, and AMD
GPUs



Our Framework: Spark + X
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I Utilize the MapReduce
framework, Spark, to handle
data and task distribution

I Automatic data/task
distribution

I Fault-tolerant
I Minimal programmer

overhead
I Leverage heterogeneous

resources to compute the tasks
local to each node

I Accelerators and other
emerging trends in HPC
technology



Case Study Applications

I Fast Subtree Kernel (FSK)
I Call graph similarity analysis

I Program characterization
I Malware analysis

I Triangle enumeration
I Spam detection
I Web link recommendation
I Social network analysis



What is FSK?

I Compute-bound graph kernel
I Measures the similarity of graphs in a dataset
I A graph is represented by a list of feature vectors

I Each feature vector represents a subtree
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FSK in our framework
I Spark Component

I Split up pairwise graph comparisons
I Local Component

I For each pair of graphs
I Compare all feature vectors
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What is Triangle Enumeration?

I Data-bound graph operation
I Finds all cycles of size 3 (AKA triangles) within a graph
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Figure: This graph contains 2 triangles (highlighted in red).



Triangle Enumeration in our framework

I Spark Component
I Partition the graph
I Distribute the

vertices/edges across
the cluster

I Local Component
I Count triangles within

each subgraph
I Done using

matrix-matrix
multiplication (BLAS)

I Spark Component
I Count triangles

between subgraphs



Hardware/Software

Fast Subtree Kernel
I Software

I PySpark
I PyOpenCL

I Hardware: AMD GPU
I Fury X

Triangle Enumeration

I Software
I PySpark
I ScikitCUDA

I Hardware: NVIDIA GPUs
I GTX 470
I GTX 970
I Tesla K20c



FSK Results - Single-Node Parallelism
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I Single node runtimes (Single thread, 8 thread, and GPU)



FSK Results - Multi-Node Scalability
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I Multiple node runtimes (CPU saturated on all nodes)



Triangle Enumeration - Optimizing Data Movement

I Runtime of Spark component for Triangle Enumeration with a
variable number of partitions for Erdos-Renyi random graphs
with differing densities

Sparse graphs (P=.001)
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I Fewer partitions allows for
more triangles to be counted
locally

Denser graphs (P=.05)
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I More partitions means
oversubscription of the GPU

I Overlaps communication
with computation



Triangle Enumeration - Optimizing Local Computation
I Performance of the local component of Triangle Enumeration

on the CPU and GPU for graphs of varying size and density
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I Running on the GPU is preferred unless the
graph is sparse (density < .01), then running on
the CPU is preferred



Conclusion

I FSK
I Linear Scaling
I GPU outperforms CPU
I Free load balancing with Spark

I Triangle Enumeration
I Optimize data movement by changing the number of Spark

partitions
I Improve local performance by choosing where to execute tasks

I Our high-level framework
I Demonstrated portability using a variety of hardware



Future Work

I Additional case-study application
I Spike neural network training
I Detecting common subgraphs within neural networks

I Additional tests
I Scalability test on a large-scale homogenous cluster
I Add latest Nvidia GPUs (K40/80) to our heterogenous cluster



Reproducibility

I All data and code on GitHub
I https://github.com/rsearles35/WACCPD-2016

https://github.com/rsearles35/WACCPD-2016

