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Motivation: Variety in Memory Hierarchies
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Platform

Memory Kind

Constant Texture SPM DDR eDRAM GDDR HBM NVRAM

Intel® Xeon® Processor - - -  - - - -

Intel® Xeon Phi™ Coprocessor - - - - -  - -

Intel® Xeon Phi™ Processor - - -  - -  -

Future System w/ 3D XPoint™ Technology - - -  - - - 

Intel® HD Graphics - -    - - -

Intel® Iris™ Graphics - -    - - -

Current Generation NVIDIA* GPU    - -  - -

Future Generation NVIDIA* GPU    - -   -

*Other names and brands may be claimed as the property of others. 
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Motivation: Inadequate Allocation Interfaces
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 Language standards are not keeping pace with modern hardware:

‒ Legacy malloc, new/delete, ALLOCATE take one parameter: size.

‒ Later additions have focused primarily on alignment.

 A growing number of incompatible and overlapping options in development:

‒ Proprietary allocators (e.g. _mm_malloc, cudaMalloc)

‒ Scalable threaded allocators (e.g. jemalloc, TBBmalloc)

‒ OS functionality (e.g. LD_PRELOAD, numactl)

‒ Environment variables (e.g. MKL_FAST_MEMORY_LIMIT)
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Design: Key Principles
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 Three driving principles:

1. Support as many existing memories as possible.

2. Support future memories without requiring significant changes.

3. Support all types of user allocations (e.g. static, stack, heap).

 We believe that a successful interface for HPC should also:

‒ Be simple to integrate into large codes.

‒ Be aware of (and make allowances for) legacy interfaces that cannot be changed.

‒ Be compatible with existing HPC programming models.
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Proposal: Key Concepts
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 Traits

‒ Descriptive characteristics that can be queried and specified by the user.

 Memory Space

‒ A particular system-level storage resource.

‒ Example Traits: “Kind”; Page Size; Permissions; Persistence; Capacity

 Allocator

‒ An object that manages memory allocations from a given memory space.

‒ Example Traits: Thread Safety; Default Alignment; Pinning; Fallback Behavior
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Proposal: Example Usage of the API
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omp_memtrait_t lbm_traits[] = { {OMP_MTK_BANDWIDTH, OMP_MTV_LOWEST}, {OMP_MT_PAGESIZE, 2*1024*1024} };
omp_memtrait_t hbm_traits[] = { {OMP_MTK_BANDWIDTH, OMP_MTV_HIGHEST}, {OMP_MT_PAGESIZE, 2*1024*1024} };

omp_memtrait_set_t lbmset, hbmset;

omp_init_memtrait_set(&lbmset, 2, lbm_traits);
omp_init_memtrait_set(&hbmset, 2, hbm_traits);

omp_memspace_t* ddr_mem = omp_init_memspace(&lbmset);
omp_memspace_t* hbw_mem = omp_init_memspace(&hbmset);

omp_alloctrait_set smallset, largeset;

omp_alloctrait_t small_traits[] = { {OMP_ATK_ALIGNMENT, 64}, {OMP_ATK_FALLBACK, OMP_ATV_ABORT} };
omp_init_alloctrait_set(&smallset, 2, small_traits);
omp_allocator_t* small_allocator = omp_init_allocator(ddr_mem, &smallset);

omp_alloctrait_t large_traits[] = { {OMP_ATK_ALIGNMENT, 64}, {OMP_ATK_FALLBACK, OMP_ATV_ALLOCATOR},
{OMP_ATK_FBDATA, small_allocator} };

omp_init_alloctrait_set(&largeset, 3, large_traits);
omp_allocator_t* large_allocator = omp_init_allocator(hbw_mem, &largeset);

…

void foo(omp_allocator_t* allocator)
{

double* array = (double*) omp_allocate(allocator, sizeof(double)*N);
…
omp_free(allocator, array);

}

Key
type
trait
API
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Proposal: Example Usage of the Directives/Clauses
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double a[N];
#pragma omp allocate(a) memtraits(bandwidth=lowest, pagesize=2*1024*1024) // allocate directive

void foo(omp_allocator_t* allocator)
{

double b[N];
#pragma omp allocate(b) allocator(allocator)

double c[M];
#pragma omp parallel firstprivate(b) private(c) \
allocate(memtraits(bandwidth=highest, pagesize=2*1024*1024):b,c) // allocate clause
{

…
} // private copies of c are automatically deallocated at the exit of this scope

} // b and c are automatically deallocated at the exit of this scope Key
type
trait
directive
clause
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Proposal: Support for Special Instructions
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#pragma omp declare version(foo_persistent) memtraits(persistence=true:v)
#pragma omp declare version(foo_scratch) memtraits(location=core:v)
void foo(double* v) { … }

#pragma omp declare version implements(foo) memtraits(optimized=latency:v)
void foo_fancy(double* v) { … }

void bar (double* a)
{

double b[N];
#pragma omp allocate(b) memtraits(location=core)

#pragma omp dispatch(b)
foo(b); // compiler can see static memtraits of ‘b’ so can call foo_scratch

#pragma omp dispatch(a)
foo(a); // compiler must perform reflection on ‘a’ for dynamic dispatch

foo_fancy(a); // user can call foo_fancy manually, based on program knowledge
}

Key
type
trait
directive
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Summary
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 We have proposed a novel mechanism for memory management that:

‒ Separates storage resources from allocation behavior.

‒ Provides a platform-agnostic interface for querying and managing memory.

‒ Is compatible with OpenMP* directives.

 Working on an OpenMP TR with newest candidate directives/API for release 
by end of 2016.

 Future work:

‒ Continue to refine and iterate over our proposal until it’s accepted by the standard. 

*Other names and brands may be claimed as the property of others. 
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