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My Background

•Computational Climate Science
• Liaise with INCITE projects running on OLCF machines
• Accelerated Model for Climate and Energy

•Center for Accelerated Application Readiness
• Funded by OLCF
• Prepared codes for Titan before it arrived
• Currently preparing codes for Summit before it arrives

• Fluids algorithm development for modern HPC
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Porting work for ACME

• Initial CUDA FORTRAN work was incredibly cumbersome
• CUDA syntax / structure is highly foreign to FORTRAN
• Loops cannot be ported in place; separate subroutine needed
• Same code cannot run on GPU and CPU
• Gradual porting not really possible

• Detecting bugs significantly more difficult
• Optimized code looks nothing like the original code

• Difficult to merge CPU code changes into CUDA
• Scientific programmers cannot understand it
• Unmaintainable and unportable
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Motivators for Using Accelerator Directives

• Large codebase – port & maintain large volume of code

• You care about Software Engineering & maintainability

• Support multiple platform targets (CPU, GPU, MIC)

•Codebase is still under development
• Scientific programmers must understand the code
•Accelerated and CPU code must look similar

• Easier debugging: run same code on CPU and accelerator
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• However, you have to marry it and stick with it
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Other Options

• Templated C++  “kokkos”
• However, you have to marry it and stick with it

• “Domain Specific Languages”
• Are they just glorified if-statements?
• Ad-hoc to the application in question
• Still requires significant development effort]

•Directives offer greater flexibility
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Refactoring: Relatively Little Work Per Node
• We’re used to parallelizing 

outer loops

• But now we must expose 
inner loops for vector ops

• However, inner loops often 
have race conditions

• Overlooking them  bugs

• Must refactor the code

call memset( mass , 0 )
!$acc parallel do collapse(4)
do ie = 1 , nelements
do k = 1 , nlevels
do j = 1 , ny
do i = 1 , nx
masstmp = mass(k,ie)
valtmp = vals(i,j,k,ie)
!$acc atomic update
masstmp = masstmp + valtmp
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• Good SE practices 

reusable low-level routines 

do ie = 1 , nelements
do k = 1 , nlevels
grad = gradient(dat(:,k,ie))
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multiply over 4 values
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Refactoring: Low-Level Calls w/ Too Little Work
• Good SE practices 

reusable low-level routines 

• “gradient” = matrix-vector 
multiply over 4 values

• Not enough for vector units 
on MIC or GPU

• Manually fission & push 
some looping down callstack

• Stop using “matmul”

do ie = 1 , nelements
do kc = 1 , kchunk
grad = gradient(dat(:,:,ie),kc)

enddo
enddo

function gradient(dat,kc) result(r)
do kk = 1 , kchunk
do i = 1 , n
k = (kc-1)*kchunk + kk
tmp = 0
do m = 1 , n
tmp = tmp + grad_mat(i,m)*dat(m)

enddo
r(i,k) = tmp

enddo
end function gradient
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Other Refactoring

•Array of structures: Outer index cannot be threaded easily
• Reusable routines require flattened arrays

• Loop Collapsing
• Poorly-sized inner loop dimension (vectorization)
• Too many nested loops (cannot nest “omp do” or “acc loop”)
• If-statements in middle of loop nest pushed into inner loop

• Fine on GPU (already vectorized); Terrible on CPU (cannot vectorize)

• Indirect addressing on fastest-varying dimension
• Doesn’t saturate wide memory bus;  Doesn’t vectorize efficiently
• Best to pad indirect addressing with contiguous dimension
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Other Refactoring

•Modern Fortran, C++ often not supported
• Functions defined inside functions
• Many layers of function interfaces
• Deeply nested classes, structs, derived type data structures

•Very old Fortran often not supported
• “Data”, goto (improving), equivalence, mysterious subroutines

• “Just because you can do a thing doesn’t mean you should”

Much of accelerator refactoring benefits the CPU
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“Performance Portability”
• Identical code will never perform optimally on all platforms

• CPU vector length: 256 bits (8 “vector threads”)
• Heavily cache-based

• KNL vector length: 512 bits  x  2 (16-32 “vector threads”)
• Moderately cache-based, some latency/bandwidth hiding

• GPU vector length: 65,536 bit (2048 “GPU vector threads”)
• Less cache-based, heavy on latency/bandwidth hiding

• Directives inherently balance performance & maintainability

• Often best to branch the code, but at the lowest level possible

• Similar looking code is easier to maintain



Things That Can Help Performance Portability
• CPU’s / MIC’s being able to handle if-statements in vector units

• The ability to use nested “omp do” and “acc loop” in the same
vector / thread context

• GPUs fixing their “register explosion” problem with long kernels

• CPU’s & MIC’s allowing users to prioritize / specify data for cache

• All compilers implementing automatic directive-based tiling

• GPU implementations improve performance of manually strip-
mined loops (as opposed to having to be collapsed)



Bugs Happen

•OpenACC & OpenMP 4.x are still maturing

• Large codebases are likely to encounter bugs



Bugs Happen

•OpenACC & OpenMP 4.x are still maturing

• Large codebases are likely to encounter bugs

•Poor performance is a bug



Bugs Happen

•OpenACC & OpenMP 4.x are still maturing

• Large codebases are likely to encounter bugs

•Poor performance is a bug

•A feature you rely on heavily that isn’t supported is a bug
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How To Deal With Compiler Bugs

•Report, Report, Report !!!
• The very moment you find a bug, check in a commit and tag it
• Try to reproduce in a smaller, more maintainable code
• Helpful to maintain a “mini-app” to make this quicker

•Be Proactive
• Send vendors small code samples that you care about
• Provide comparison points if applicable
• Get in touch with vendor reps so they’re aware of your code

•Be kind: Compiler developers are people too
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A Sociological Experiment
• OpenMP and OpenACC are as much sociology as technical

• App. Developer: “I won’t use it because it isn’t mature.”

• Compiler Developer: “It immature because you won’t use it.”

• You determine when it’s appropriate to try things out
• But “mature” is not a well-defined idea

• Accelerator directives will always have room for improvement

We all benefit when you engage compiler developers
https://developer.nvidia.com/accelerated-computing-developer
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Refactoring: Lots Work Per Node
• Often have to stage data to 

Accelerator’s smaller RAM

• Usually, long outer loop over 
many routines

• On GPUs, long kernels 
register pressure  poor 
performance

• Have to break up loops and 
turn local temps into globals

do ie = 1 , nelements
glob1(:,:,ie) = &

routine1(data1(:,:,ie))
[Intermittent work]

enddo
do ie = 1 , nelements
glob2(:,:,ie) = &

routine2(glob1(:,:,ie))
[Intermittent work]

enddo
do ie = 1 , nelements
data3(:,:,ie) =  &

routine3(glob1(:,:,ie),&
glob2(:,:,ie))

enddo


