
The Broader Picture of
Using Accelerator

Directives in Your Code

Matt Norman

National Center for Computational Sciences

Oak Ridge National Laboratory

Third Workshop on Accelerator Programming Using Directives

My Background

•Computational Climate Science
• Liaise with INCITE projects running on OLCF machines
• Accelerated Model for Climate and Energy

•Center for Accelerated Application Readiness
• Funded by OLCF
• Prepared codes for Titan before it arrived
• Currently preparing codes for Summit before it arrives

• Fluids algorithm development for modern HPC

Porting work for ACME

• Initial CUDA FORTRAN work was incredibly cumbersome

Porting work for ACME

• Initial CUDA FORTRAN work was incredibly cumbersome
• CUDA syntax / structure is highly foreign to FORTRAN

Porting work for ACME

• Initial CUDA FORTRAN work was incredibly cumbersome
• CUDA syntax / structure is highly foreign to FORTRAN
• Loops cannot be ported in place; separate subroutine needed

Porting work for ACME

• Initial CUDA FORTRAN work was incredibly cumbersome
• CUDA syntax / structure is highly foreign to FORTRAN
• Loops cannot be ported in place; separate subroutine needed
• Same code cannot run on GPU and CPU

Porting work for ACME

• Initial CUDA FORTRAN work was incredibly cumbersome
• CUDA syntax / structure is highly foreign to FORTRAN
• Loops cannot be ported in place; separate subroutine needed
• Same code cannot run on GPU and CPU
• Gradual porting not really possible

• Detecting bugs significantly more difficult

Porting work for ACME

• Initial CUDA FORTRAN work was incredibly cumbersome
• CUDA syntax / structure is highly foreign to FORTRAN
• Loops cannot be ported in place; separate subroutine needed
• Same code cannot run on GPU and CPU
• Gradual porting not really possible

• Detecting bugs significantly more difficult
• Optimized code looks nothing like the original code

• Difficult to merge CPU code changes into CUDA
• Scientific programmers cannot understand it
• Unmaintainable and unportable

Motivators for Using Accelerator Directives

• Large codebase – port & maintain large volume of code

Motivators for Using Accelerator Directives

• Large codebase – port & maintain large volume of code

• You care about Software Engineering & maintainability

Motivators for Using Accelerator Directives

• Large codebase – port & maintain large volume of code

• You care about Software Engineering & maintainability

• Support multiple platform targets (CPU, GPU, MIC)

Motivators for Using Accelerator Directives

• Large codebase – port & maintain large volume of code

• You care about Software Engineering & maintainability

• Support multiple platform targets (CPU, GPU, MIC)

•Codebase is still under development
• Scientific programmers must understand the code
•Accelerated and CPU code must look similar

Motivators for Using Accelerator Directives

• Large codebase – port & maintain large volume of code

• You care about Software Engineering & maintainability

• Support multiple platform targets (CPU, GPU, MIC)

•Codebase is still under development
• Scientific programmers must understand the code
•Accelerated and CPU code must look similar

• Easier debugging: run same code on CPU and accelerator

Other Options

• Templated C++  “kokkos”
• However, you have to marry it and stick with it

• “Domain Specific Languages”
• Are they just glorified if-statements?
• Ad-hoc to the application in question
• Still requires significant development effort]

Other Options

• Templated C++  “kokkos”
• However, you have to marry it and stick with it

• “Domain Specific Languages”
• Are they just glorified if-statements?
• Ad-hoc to the application in question
• Still requires significant development effort]

•Directives offer greater flexibility

Refactoring: Relatively Little Work Per Node

Refactoring: Relatively Little Work Per Node
• We’re used to parallelizing

outer loops

!$omp parallel do
do ie = 1 , nelements
do k = 1 , nlevels
mass(k,ie) = sum(vals(:,:,k,ie))

Refactoring: Relatively Little Work Per Node
• We’re used to parallelizing

outer loops

• But now we must expose
inner loops for vector ops

• However, inner loops often
have race conditions

• Overlooking them  bugs

!$omp parallel do
do ie = 1 , nelements
do k = 1 , nlevels
mass(k,ie) = sum(vals(:,:,k,ie))

Refactoring: Relatively Little Work Per Node
• We’re used to parallelizing

outer loops

• But now we must expose
inner loops for vector ops

• However, inner loops often
have race conditions

• Overlooking them  bugs

• Must refactor the code

call memset(mass , 0)
!$acc parallel do collapse(4)
do ie = 1 , nelements
do k = 1 , nlevels
do j = 1 , ny
do i = 1 , nx
masstmp = mass(k,ie)
valtmp = vals(i,j,k,ie)
!$acc atomic update
masstmp = masstmp + valtmp

Refactoring: Low-Level Calls w/ Too Little Work
• Good SE practices 

reusable low-level routines

do ie = 1 , nelements
do k = 1 , nlevels
grad = gradient(dat(:,k,ie))

enddo
enddo

function gradient(dat) result(r)
r = matmul(grad_mat , dat)

end function gradient

Refactoring: Low-Level Calls w/ Too Little Work
• Good SE practices 

reusable low-level routines

• “gradient” = matrix-vector
multiply over 4 values

• Not enough for vector units
on MIC or GPU

do ie = 1 , nelements
do k = 1 , nlevels
grad = gradient(dat(:,k,ie))

enddo
enddo

function gradient(dat) result(r)
r = matmul(grad_mat , dat)

end function gradient

Refactoring: Low-Level Calls w/ Too Little Work
• Good SE practices 

reusable low-level routines

• “gradient” = matrix-vector
multiply over 4 values

• Not enough for vector units
on MIC or GPU

• Manually fission & push
some looping down callstack

do ie = 1 , nelements
do kc = 1 , kchunk
grad = gradient(dat(:,:,ie),kc)

enddo
enddo

function gradient(dat,kc) result(r)
do kk = 1 , kchunk
do i = 1 , n
k = (kc-1)*kchunk + kk
tmp = 0
do m = 1 , n
tmp = tmp + grad_mat(i,m)*dat(m)

enddo
r(i,k) = tmp

enddo
end function gradient

Refactoring: Low-Level Calls w/ Too Little Work
• Good SE practices 

reusable low-level routines

• “gradient” = matrix-vector
multiply over 4 values

• Not enough for vector units
on MIC or GPU

• Manually fission & push
some looping down callstack

• Stop using “matmul”

do ie = 1 , nelements
do kc = 1 , kchunk
grad = gradient(dat(:,:,ie),kc)

enddo
enddo

function gradient(dat,kc) result(r)
do kk = 1 , kchunk
do i = 1 , n
k = (kc-1)*kchunk + kk
tmp = 0
do m = 1 , n
tmp = tmp + grad_mat(i,m)*dat(m)

enddo
r(i,k) = tmp

enddo
end function gradient

Other Refactoring

•Array of structures: Outer index cannot be threaded easily
• Reusable routines require flattened arrays

Other Refactoring

•Array of structures: Outer index cannot be threaded easily
• Reusable routines require flattened arrays

• Loop Collapsing
• Poorly-sized inner loop dimension (vectorization)
• Too many nested loops (cannot nest “omp do” or “acc loop”)
• If-statements in middle of loop nest pushed into inner loop

• Fine on GPU (already vectorized); Terrible on CPU (cannot vectorize)

Other Refactoring

•Array of structures: Outer index cannot be threaded easily
• Reusable routines require flattened arrays

• Loop Collapsing
• Poorly-sized inner loop dimension (vectorization)
• Too many nested loops (cannot nest “omp do” or “acc loop”)
• If-statements in middle of loop nest pushed into inner loop

• Fine on GPU (already vectorized); Terrible on CPU (cannot vectorize)

• Indirect addressing on fastest-varying dimension
• Doesn’t saturate wide memory bus; Doesn’t vectorize efficiently
• Best to pad indirect addressing with contiguous dimension

Other Refactoring

•Modern Fortran, C++ often not supported
• Functions defined inside functions
• Many layers of function interfaces
• Deeply nested classes, structs, derived type data structures

Other Refactoring

•Modern Fortran, C++ often not supported
• Functions defined inside functions
• Many layers of function interfaces
• Deeply nested classes, structs, derived type data structures

•Very old Fortran often not supported
• “Data”, goto (improving), equivalence, mysterious subroutines

Other Refactoring

•Modern Fortran, C++ often not supported
• Functions defined inside functions
• Many layers of function interfaces
• Deeply nested classes, structs, derived type data structures

•Very old Fortran often not supported
• “Data”, goto (improving), equivalence, mysterious subroutines

• “Just because you can do a thing doesn’t mean you should”

Other Refactoring

•Modern Fortran, C++ often not supported
• Functions defined inside functions
• Many layers of function interfaces
• Deeply nested classes, structs, derived type data structures

•Very old Fortran often not supported
• “Data”, goto (improving), equivalence, mysterious subroutines

• “Just because you can do a thing doesn’t mean you should”

Much of accelerator refactoring benefits the CPU

“Performance Portability”

“Performance Portability”

“Performance Portability”
• Identical code will never perform optimally on all platforms

• CPU vector length: 256 bits (8 “vector threads”)
• Heavily cache-based

• KNL vector length: 512 bits x 2 (16-32 “vector threads”)
• Moderately cache-based, some latency/bandwidth hiding

• GPU vector length: 65,536 bit (2048 “GPU vector threads”)
• Less cache-based, heavy on latency/bandwidth hiding

“Performance Portability”
• Identical code will never perform optimally on all platforms

• CPU vector length: 256 bits (8 “vector threads”)
• Heavily cache-based

• KNL vector length: 512 bits x 2 (16-32 “vector threads”)
• Moderately cache-based, some latency/bandwidth hiding

• GPU vector length: 65,536 bit (2048 “GPU vector threads”)
• Less cache-based, heavy on latency/bandwidth hiding

• Directives inherently balance performance & maintainability

“Performance Portability”
• Identical code will never perform optimally on all platforms

• CPU vector length: 256 bits (8 “vector threads”)
• Heavily cache-based

• KNL vector length: 512 bits x 2 (16-32 “vector threads”)
• Moderately cache-based, some latency/bandwidth hiding

• GPU vector length: 65,536 bit (2048 “GPU vector threads”)
• Less cache-based, heavy on latency/bandwidth hiding

• Directives inherently balance performance & maintainability

• Often best to branch the code, but at the lowest level possible

• Similar looking code is easier to maintain

Things That Can Help Performance Portability
• CPU’s / MIC’s being able to handle if-statements in vector units

• The ability to use nested “omp do” and “acc loop” in the same
vector / thread context

• GPUs fixing their “register explosion” problem with long kernels

• CPU’s & MIC’s allowing users to prioritize / specify data for cache

• All compilers implementing automatic directive-based tiling

• GPU implementations improve performance of manually strip-
mined loops (as opposed to having to be collapsed)

Bugs Happen

•OpenACC & OpenMP 4.x are still maturing

• Large codebases are likely to encounter bugs

Bugs Happen

•OpenACC & OpenMP 4.x are still maturing

• Large codebases are likely to encounter bugs

•Poor performance is a bug

Bugs Happen

•OpenACC & OpenMP 4.x are still maturing

• Large codebases are likely to encounter bugs

•Poor performance is a bug

•A feature you rely on heavily that isn’t supported is a bug

How To Deal With Compiler Bugs

How To Deal With Compiler Bugs

•Report, Report, Report !!!
• The very moment you find a bug, check in a commit and tag it
• Try to reproduce in a smaller, more maintainable code
• Helpful to maintain a “mini-app” to make this quicker

How To Deal With Compiler Bugs

•Report, Report, Report !!!
• The very moment you find a bug, check in a commit and tag it
• Try to reproduce in a smaller, more maintainable code
• Helpful to maintain a “mini-app” to make this quicker

•Be Proactive
• Send vendors small code samples that you care about
• Provide comparison points if applicable
• Get in touch with vendor reps so they’re aware of your code

How To Deal With Compiler Bugs

•Report, Report, Report !!!
• The very moment you find a bug, check in a commit and tag it
• Try to reproduce in a smaller, more maintainable code
• Helpful to maintain a “mini-app” to make this quicker

•Be Proactive
• Send vendors small code samples that you care about
• Provide comparison points if applicable
• Get in touch with vendor reps so they’re aware of your code

•Be kind: Compiler developers are people too

A Sociological Experiment

A Sociological Experiment
• OpenMP and OpenACC are as much sociology as technical

• App. Developer: “I won’t use it because it isn’t mature.”

• Compiler Developer: “It immature because you won’t use it.”

• You determine when it’s appropriate to try things out
• But “mature” is not a well-defined idea

• Accelerator directives will always have room for improvement

A Sociological Experiment
• OpenMP and OpenACC are as much sociology as technical

• App. Developer: “I won’t use it because it isn’t mature.”

• Compiler Developer: “It immature because you won’t use it.”

• You determine when it’s appropriate to try things out
• But “mature” is not a well-defined idea

• Accelerator directives will always have room for improvement

We all benefit when you engage compiler developers
https://developer.nvidia.com/accelerated-computing-developer

Refactoring: Lots Work Per Node
• Often have to stage data to

Accelerator’s smaller RAM

Refactoring: Lots Work Per Node
• Often have to stage data to

Accelerator’s smaller RAM

• Usually, long outer loop over
many routines

do ie = 1 , nelements
tmp1 = routine1(data1(:,:,ie))
[Intermittent work]
tmp2 = routine2(tmp1)
[Intermittent work]
data3(:,:,ie) = routine3(tmp1,tmp2)

enddo

Refactoring: Lots Work Per Node
• Often have to stage data to

Accelerator’s smaller RAM

• Usually, long outer loop over
many routines

• On GPUs, long kernels 
register pressure  poor
performance

do ie = 1 , nelements
tmp1 = routine1(data1(:,:,ie))
[Intermittent work]
tmp2 = routine2(tmp1)
[Intermittent work]
data3(:,:,ie) = routine3(tmp1,tmp2)

enddo

Refactoring: Lots Work Per Node
• Often have to stage data to

Accelerator’s smaller RAM

• Usually, long outer loop over
many routines

• On GPUs, long kernels 
register pressure  poor
performance

• Have to break up loops and
turn local temps into globals

do ie = 1 , nelements
glob1(:,:,ie) = &

routine1(data1(:,:,ie))
[Intermittent work]

enddo
do ie = 1 , nelements
glob2(:,:,ie) = &

routine2(glob1(:,:,ie))
[Intermittent work]

enddo
do ie = 1 , nelements
data3(:,:,ie) = &

routine3(glob1(:,:,ie),&
glob2(:,:,ie))

enddo

