The Broader Picture of
Using Accelerator
Directives in Your Code

Matt Norman
National Center for Computational Sciences
Oak Ridge National Laboratory

Third Workshop on Accelerator Programming Using Directives

OAK RIDGE | GiRshie

National Laboratory | COMPUTING FACILITY

My Background

* Computational Climate Science
* Liaise with INCITE projects running on OLCF machines
* Accelerated Model for Climate and Energy

* Center for Accelerated Application Readiness

* Funded by OLCF
* Prepared codes for Titan before it arrived
* Currently preparing codes for Summit before it arrives

* Fluids algorithm development for modern HPC

Porting work for ACME

* Initial CUDA FORTRAN work was incredibly cumbersome

Porting work for ACME

* Initial CUDA FORTRAN work was incredibly cumbersome
* CUDA syntax / structure is highly foreign to FORTRAN

Porting work for ACME

* Initial CUDA FORTRAN work was incredibly cumbersome
* CUDA syntax / structure is highly foreign to FORTRAN
* Loops cannot be ported in place; separate subroutine needed

Porting work for ACME

* Initial CUDA FORTRAN work was incredibly cumbersome
* CUDA syntax / structure is highly foreign to FORTRAN
* Loops cannot be ported in place; separate subroutine needed
* Same code cannot run on GPU and CPU

Porting work for ACME

* Initial CUDA FORTRAN work was incredibly cumbersome
* CUDA syntax / structure is highly foreign to FORTRAN
* Loops cannot be ported in place; separate subroutine needed
* Same code cannot run on GPU and CPU
* Gradual porting not really possible
* Detecting bugs significantly more difficult

Porting work for ACME

* Initial CUDA FORTRAN work was incredibly cumbersome
* CUDA syntax / structure is highly foreign to FORTRAN
* Loops cannot be ported in place; separate subroutine needed
* Same code cannot run on GPU and CPU
* Gradual porting not really possible
* Detecting bugs significantly more difficult
* Optimized code looks nothing like the original code
* Difficult to merge CPU code changes into CUDA
* Scientific programmers cannot understand it
 Unmaintainable and unportable

Motivators for Using Accelerator Directives

e Large codebase — port & maintain large volume of code

Motivators for Using Accelerator Directives

e Large codebase — port & maintain large volume of code

* You care about Software Engineering & maintainability

Motivators for Using Accelerator Directives

* Large codebase — port & maintain large volume of code
* You care about Software Engineering & maintainability
e Support multiple platform targets (CPU, GPU, MIC)

Motivators for Using Accelerator Directives

* Large codebase — port & maintain large volume of code
* You care about Software Engineering & maintainability
e Support multiple platform targets (CPU, GPU, MIC)

* Codebase is still under development
* Scientific programmers must understand the code

e Accelerated and CPU code must look similar

Motivators for Using Accelerator Directives

* Large codebase — port & maintain large volume of code
* You care about Software Engineering & maintainability
e Support multiple platform targets (CPU, GPU, MIC)

* Codebase is still under development
* Scientific programmers must understand the code

* Accelerated and CPU code must look similar
* Easier debugging: run same code on CPU and accelerator

Other Options

* Templated C++ =2 “kokkos”

* However, you have to marry it and stick with it
* “Domain Specific Languages”

* Are they just glorified if-statements?

* Ad-hoc to the application in question
* Still requires significant development effort]

Other Options

* Templated C++ =2 “kokkos”

* However, you have to marry it and stick with it
* “Domain Specific Languages”

* Are they just glorified if-statements?

* Ad-hoc to the application in question
* Still requires significant development effort]

* Directives offer greater flexibility

Refactoring: Relatively Little Work Per Node

Refactoring: Relatively Little Work Per Node

* We're used to parallelizing éing PEIEREOCO
outer loops do k = 1 , nlevels

mass(k,ie) = sum(vals(:,:,k,ie))

Refactoring: Relatively Little Work Per Node

* We're used to parallelizing éing PEIEREOCO
outer loops do k = 1 , nlevels

mass(k,ie) = sum(vals(:,:,k,ie))

* But now we must expose
inner loops for vector ops

* However, inner loops often
have race conditions

* Overlooking them - bugs

Refactoring: Relatively Little Work Per Node

* We're used to parallelizing call memset(mass , @)
I$acc parallel do collapse(4)

outer Ioops do ie = 1 , nelements
do k =1, nlevels
* But now we must expose doj=1, ny
Inner |OOpS for vector OpS doi=1, nx
. masstmp = mass(k,ie)
* However, Inner |OOpS often valtmp = vals(i,j,k,ie)

I$acc atomic update

have race conditions
masstmp = masstmp + valtmp

* Overlooking them - bugs
* Must refactor the code

Refactoring: Low-Level Calls w/ Too Little Work

* Good SE practices =2
reusable low-level routines

do ie 1 , nelements
do k 1, nlevels
grad = gradient(dat(:,k,ie))
enddo
enddo

function gradient(dat) result(r)
r = matmul(grad mat , dat)
end function gradient

Refactoring: Low-Level Calls w/ Too Little Work

* Good SE practices = (0 d2 = d, NElenErts
. do k = 1 , nlevels
reusable low-level routines grad = gradient(dat(:,k,ie))
‘“ : ” o : enddo
e “gradient” = matrix-vector enddo

multiply over 4 values
function gradient(dat) result(r)

* Not enough for vector units r = matmul(grad mat , dat)
on MIC or GPU end function gradient

Refactoring: Low-Level Calls w/ Too Little Work

* Good SE practices =2
reusable low-level routines

e “gradient” = matrix-vector
multiply over 4 values

* Not enough for vector units
on MIC or GPU

* Manually fission & push
some looping down callstack

do ie = 1 , nelements

do kc = 1 , kchunk

grad = gradient(dat(:,:,ie),kc)
enddo
enddo

function gradient(dat,kc) result(r)
do kk 1 , kchunk
do i 1, n
k = (kc-1)*kchunk + kk
tmp %]
do m 1, n
tmp = tmp + grad mat(i,m)*dat(m)
enddo
r(i,k) = tmp
enddo
end function gradient

i~~~ 1 I

Refactoring: Low-Level Calls w/ Too Little Work

* Good SE practices =2
reusable low-level routines

e “gradient” = matrix-vector
multiply over 4 values

* Not enough for vector units
on MIC or GPU

* Manually fission & push
some looping down callstack

* Stop using “matmul”

do ie = 1 , nelements

do kc = 1 , kchunk

grad = gradient(dat(:,:,ie),kc)
enddo
enddo

function gradient(dat,kc) result(r)
do kk 1 , kchunk
do i 1, n
k = (kc-1)*kchunk + kk
tmp %]
do m 1, n
tmp = tmp + grad mat(i,m)*dat(m)
enddo
r(i,k) = tmp
enddo
end function gradient

i~~~ 1 I

Other Refactoring

* Array of structures: Outer index cannot be threaded easily
* Reusable routines require flattened arrays

Other Refactoring

* Array of structures: Outer index cannot be threaded easily
* Reusable routines require flattened arrays

* Loop Collapsing
* Poorly-sized inner loop dimension (vectorization)
* Too many nested loops (cannot nest “omp do” or “acc loop”)

* [f-statements in middle of loop nest pushed into inner loop
* Fine on GPU (already vectorized); Terrible on CPU (cannot vectorize)

Other Refactoring

* Array of structures: Outer index cannot be threaded easily

* Reusable routines require flattened arrays
* Loop Collapsing

* Poorly-sized inner loop dimension (vectorization)

* Too many nested loops (cannot nest “omp do” or “acc loop”)

* [f-statements in middle of loop nest pushed into inner loop

* Fine on GPU (already vectorized); Terrible on CPU (cannot vectorize)

* Indirect addressing on fastest-varying dimension

* Doesn’t saturate wide memory bus; Doesn’t vectorize efficiently
* Best to pad indirect addressing with contiguous dimension

Other Refactoring

* Modern Fortran, C++ often not supported
* Functions defined inside functions
* Many layers of function interfaces
* Deeply nested classes, structs, derived type data structures

Other Refactoring

* Modern Fortran, C++ often not supported
* Functions defined inside functions
* Many layers of function interfaces
* Deeply nested classes, structs, derived type data structures

*Very old Fortran often not supported
e “Data”, goto (improving), equivalence, mysterious subroutines

Other Refactoring

* Modern Fortran, C++ often not supported
* Functions defined inside functions
* Many layers of function interfaces
* Deeply nested classes, structs, derived type data structures

*Very old Fortran often not supported
e “Data”, goto (improving), equivalence, mysterious subroutines

* “Just because you can do a thing doesn’t mean you should”

Other Refactoring

* Modern Fortran, C++ often not supported
* Functions defined inside functions
* Many layers of function interfaces
* Deeply nested classes, structs, derived type data structures

*Very old Fortran often not supported
e “Data”, goto (improving), equivalence, mysterious subroutines

* “Just because you can do a thing doesn’t mean you should”

Much of accelerator refactoring benefits the CPU

“Performance Portability”

“Performance Portability”

YOU KEEP IISING THAT

| DON'T THINK YOU KNOW WHAT
IT MEANS

“Performance Portability”

* |[dentical code will never perform optimally on all platforms
* CPU vector length: 256 bits (8 “vector threads”)
* Heavily cache-based
* KNL vector length: 512 bits x 2 (16-32 “vector threads”)
* Moderately cache-based, some latency/bandwidth hiding
* GPU vector length: 65,536 bit (2048 “GPU vector threads”)
* Less cache-based, heavy on latency/bandwidth hiding

“Performance Portability”

* |[dentical code will never perform optimally on all platforms
* CPU vector length: 256 bits (8 “vector threads”)
* Heavily cache-based
* KNL vector length: 512 bits x 2 (16-32 “vector threads”)
* Moderately cache-based, some latency/bandwidth hiding
* GPU vector length: 65,536 bit (2048 “GPU vector threads”)
* Less cache-based, heavy on latency/bandwidth hiding

* Directives inherently balance performance & maintainability

“Performance Portability”

* |[dentical code will never perform optimally on all platforms
* CPU vector length: 256 bits (8 “vector threads”)
* Heavily cache-based
* KNL vector length: 512 bits x 2 (16-32 “vector threads”)
* Moderately cache-based, some latency/bandwidth hiding
* GPU vector length: 65,536 bit (2048 “GPU vector threads”)
* Less cache-based, heavy on latency/bandwidth hiding

* Directives inherently balance performance & maintainability
e Often best to branch the code, but at the lowest level possible

e Similar looking code is easier to maintain

Things That Can Help Performance Portability

* CPU’s / MIC’s being able to handle if-statements in vector units

* The ability to use nested “omp do” and “acc loop” in the same
vector / thread context

* GPUs fixing their “register explosion” problem with long kernels
* CPU’s & MIC’s allowing users to prioritize / specify data for cache
* All compilers implementing automatic directive-based tiling

* GPU implementations improve performance of manually strip-
mined loops (as opposed to having to be collapsed)

Bugs Happen

* OpenACC & OpenMP 4.x are still maturing
 Large codebases are likely to encounter bugs

Bugs Happen

* OpenACC & OpenMP 4.x are still maturing
 Large codebases are likely to encounter bugs
* Poor performance is a bug

Bugs Happen

* OpenACC & OpenMP 4.x are still maturing
 Large codebases are likely to encounter bugs

* Poor performance is a bug
* A feature you rely on heavily that isn’t supported is a bug

How To Deal With Compiler Bugs

How To Deal With Compiler Bugs

* Report, Report, Report !!!
* The very moment you find a bug, check in a commit and tag it
* Try to reproduce in a smaller, more maintainable code
* Helpful to maintain a “mini-app” to make this quicker

How To Deal With Compiler Bugs

* Report, Report, Report !!!
* The very moment you find a bug, check in a commit and tag it
* Try to reproduce in a smaller, more maintainable code
* Helpful to maintain a “mini-app” to make this quicker

* Be Proactive
* Send vendors small code samples that you care about
* Provide comparison points if applicable
* Get in touch with vendor reps so they’re aware of your code

How To Deal With Compiler Bugs

* Report, Report, Report !!!
* The very moment you find a bug, check in a commit and tag it
* Try to reproduce in a smaller, more maintainable code
* Helpful to maintain a “mini-app” to make this quicker

* Be Proactive
* Send vendors small code samples that you care about
* Provide comparison points if applicable
* Get in touch with vendor reps so they’re aware of your code

* Be kind: Compiler developers are people too

A Sociological Experiment

A Sociological Experiment

* OpenMP and OpenACC are as much sociology as technical
* App. Developer: “I won’t use it because it isn’t mature.”
 Compiler Developer: “It immature because you won’t use it.”

* You determine when it’s appropriate to try things out
* But “mature” is not a well-defined idea
* Accelerator directives will always have room for improvement

A Sociological Experiment

* OpenMP and OpenACC are as much sociology as technical
* App. Developer: “I won’t use it because it isn’t mature.”
 Compiler Developer: “It immature because you won’t use it.”

* You determine when it’s appropriate to try things out
* But “mature” is not a well-defined idea
* Accelerator directives will always have room for improvement

We all benefit when you engage compiler developers

https://developer.nvidia.com/accelerated-computing-developer

Refactoring: Lots Work Per Node

e Often have to stage data to
Accelerator’s smaller RAM

Refactoring: Lots Work Per Node

e Often have to stage data to do ie = 1, nelements ,
, tmpl = routinel(datal(:,:,ie))
tmp2 = routine2(tmpl)
e Usually, long outer loop over Pl A MRk
many routines data3(:,:,ie) = routine3(tmpl,tmp2)

enddo

Refactoring: Lots Work Per Node

e Often have to stage data to do ie = 1, nelements ,
, tmpl = routinel(datal(:,:,ie))
tmp2 = routine2(tmpl)
e Usually, long outer loop over Pl A MRk
many routines data3(:,:,ie) = routine3(tmpl,tmp2)

enddo

* On GPUs, long kernels 2
register pressure = poor
performance

Refactoring: Lots Work Per Node

* Often have to stage data to do 1le =1 , nelements
, globl(:,:,ie) = &
Accelerator S Sma”er RAM poutinel(datal(:, :,ie))

. [Intermittent work]
Usually, long outer loop over 445

many routines do ie = 1 , nelements
glob2(:,:,1ie) = &
* On GPUs, long kernels 2 routine2(globl(:, :,ie))
register pressure = poor eggg’;e”mltte”t work]
performance do ie = 1 , nelements
data3(:,:,ie) = &
* Have to break up loops and routine3(globl(:,:,ie),&
turn local temps into globals glob2(:,:,ie))

enddo

