Third Workshop on Accelerator Programming Using Directives
(WACCPD2016), Nov. 14 2016

Acceleration of Element-by-Element Kernel in Unstructured
Implicit Low-order Finite-element Earthquake Simulation
using OpenACC on Pascal GPUs

Kohel Fujita, Takuma Yamaguchi, Tsuyoshi Ichimura,
Muneo Hori, Lalith Maddegedara

po CI_)“Igg 49 THE UNIVERSITY OF TOKYO

RIMEN

Many cities are prone to earthquakes

I-rhnuaun Magn tude Ex-hquake Cepth (sm)

Global Earthquakes 1900 - 2013

o 70-78 ® O0-=

o 75-20 o 0-=6
. E2D-8s5 ® ID-+
) EBS5+
» Aplw Wimnoec

e W e
.

Seismicity d'f‘,~ arth 1900-2013 - ~ From U.S. Geological Survey

Many cities are prone to earthquakes

US Earthquakes Causing Damage
1750 - 1996
Modified Mercalli Intensity VI - Xl

1207W 110°W 1007WY 807w BOTWY TOW

feliy W ot bt b 307N

From U.S. Geological Survey

120°W now 1-Dﬁ"'u'-' 0w BO'W TOOW

Introduction

« Contribution of HPC to earthquake mitigation highly anticipated from society

 We are developing comprehensive earthquake simulation that simulate all
phases of earthquake disaster by full use of K computer system

o Simulate all phases of earthquake required by speeding up core solver

« Nominated for SC14 Gordon Bell Prize Finalist, SC15 Gordon Bell Prize Finalist &
SC16 Best Poster Finalist

eToday’' s topic 1 s po-CRUhetarogendoussenvisoonheate r t o
s Report performance on NVIDIA s newest Pascal

Structure response

Surface soil*._

' Nonlinear wave

Bedrock =~~~

Crust

Linear wave

Faul Z K computer: 8 core CPU x 82944 node system
with peak performance of 10.6 PFLOPS

Earthquake disaster process

Comprehensive earthquake simulation

c) Resident evacuation

a) Earthquake wave propagation R

LR

1 shinjuku

il

10.25 km

b) City response simulation < Worl d’ s | elemgeatsimulationni t e

enabled by developed solver 5

City simulation

Data SIO, NOAu:TJ.SL:::VRNGA GEBCO . GOOS[éwi ea rth

Image IBCAO

Visualized by CYBERNET SYSTEMS CO., LTD

Target problem

e Solve large matrix equation many times

* Arises from unstructured finite-element analyses used in many
components of comprehensive earthquake simulation

 Involves many random data access & communication

e Difficulty of problem

 Attaining load balance & peak-performance & convergency of iterative
solver & short time-to-solution at same time

« Smart use of compute precision space, constraints in solver search
space according to physical solution space required

Ku="f

/ \ Unknown vector with 1 trillion degrees of freedom

<— Quter force vector

Sparse, symmetric positive definite matrix

Designing scalable & fast finite-element
solver

e Design algorithm that can obtain equal granularity at O(million)
cores

o Matrix-free matrix-vector product (Element-by-Element method) is
promising: Good load balance when elements per core is equal

» Also high-peak performance as it is on-cache computation

Element-by-Element method

+= Element #0
f=2_P_.K.P.Tu

e e e e
i += i Element #1

[K. Is generated on-the-fly]
f : u

Ke Element #N-1

Designing scalable & fast finite-element
solver

e Conjugate-Gradient method + Element-by-Element method +
simple preconditioner
Scalability & peak-performance good, but poor convergency
Time-to-solution not good

e Conjugate-Gradient method + sophisticated preconditioner

Convergency good, but scalability or peak-performance (sometimes
both) not good

Time-to-solution not good

Designing scalable & fast finite-element
solver

e Conjugate-Gradient method + Element-by-Element method +
Multi-grid + Mixed-Precision + Adaptive preconditioner

Scalability & peak-performance good (all computation based on
Element-by-Element), convergency good

Time-to-solution good

« Key to make this solver even faster:
 Make Element-by-Element method super fast

Fast Element-by-Element method

* Element-by-Element method for unstructured mesh involves many random access &
computation

» Use structured mesh to reduce these costs

» Fast & scalable solver algorithm + fast Element-by-Element method
* Enables very good scalability & peak-performance & convergency & time-to-solution on K computer
 Nominated as Gordon Bell prize finalists for SC14 and SC15

Pure
— unstructured
mesh

-3

Unstructured
mesh

Structured mes

Random Register-to-L1
cache access

FLOP count

N\ 1/3.0 o
AN o

AN
N\ 1/3.6
N\

.

e

Unstructured Structured Unstructured Structured

Operation count for Element-by-Element kernel

(linear elements)

11

Motivation & aim of this study

« Demand for conducting comprehensive earthquake simulations on
variety of compute systems
e Joint projects ongoing with government/companies for actual use in disaster
mitigation
« Users have access to different types of compute environment
 Advance in GPU accelerator systems
* Improvement in compute capability & performance-per-watt

e We aim to port high-performance CPU based solver to GPU-CPU
heterogeneous systems
o Extend usability to wider range of compute systems & attain further speedup

Porting approach

e Same algorithm expected to be more effective on GPU-CPU
heterogeneous systems

* Use of mixed precision (most computation is done in single precision
Instead of double precision) more effective

« Reducing random access by structured mesh more effective

» Developing high-performance Element-by-Element kernel for
GPU becomes key for fast solver

e Our approach: attain high-performance with low porting cost
 Directly port CPU code for simple kernels by OpenACC
* Redesign algorithm of Element-by-Element kernel for GPU

Element-by-Element kernel algorithm for CPUs

* Element-by-Element kernel involves data recurrence

 Algorithm for avoiding data recurrence on CPUs
» Use temporary buffers per core & per SIMD lane
» Suitable for small core counts with large cache capacity

Element-by-Element method

/g 4= E Element #0
Data recurrence
(add into same node)

\i 4= N i Element #1

\
f;Ku

e

Element #N-1

Element-by-Element kernel algorithm for GPUs

* GPU: designed to hide latency by running many threads on 103
physical cores
e Cannot allocate temporary buffers per thread on GPU memory

 Algorithm for adding up thread-wise results on GPUs

» Coloring often used for previous GPUs
« Algorithm independent of cache and atomics

 Recent GPUs have improved cache and atomics
« Using atomics expected to improve performance as data (u) can be reused on cache

/ E Element #0
xZ
f! X

Element #1

Atomic
add : u (on cache)

Implementation of GPU computation

element loop |

f(3,cny4)=Ku34+f(3,cny4)
enddo

enddo

I$SACC END DATA

° OpenACC: Port to GPU by a) Coloring add b) Atomic add
in serting a few directives ISACC DATA PRESENT(...) ISACC DATA PRESENT(...)
° Parallelize do icolor=1,ncolor ISACC PARALLEL LOOP
_ _ I$ACC PARALLEL LOOP do i=1,ne
« Atomically operate to avoid do i:ng(icolor),ne(icolor) | read arrays
. . |
data race (atomic version) e ompute K
* Reduce CPU-GPU data o R N
transfer to the minimum Kulz2=..
I add to global vector
I add to global vector ISACC ATOMIC
f(1,cnyl)=Kull+f(1,cnyl) f(1,cnyl)=Kull+f(1,cnyl)
e Launch threads for the f(2,cny1)=Ku21+f(2,cny1) ISACC ATOMIC

f(2,cnyl)=Ku21+f(2,cnyl)

ISACC ATOMIC
f(3,cny4)=Ku34+f(3,cny4)
enddo

I$SACC END DATA

Comparison of algorithms

° Coloring and Atomics Elapsed time per EBE call (ms)

« With pure unstructured computation = K40 = P100

 NVIDIA K40 and P100 with OpenACC
e K40: 4.29 TFLOPS (SP)
. P100: 10.6 TFLOPS (SP) 40

e« 10,427,823 DOF and 2,519,867 elements

50

30

e Atomics Is faster algorithm 20

1/2.8
_
. . . i 1/4.2
 High data locality and enhanced atomic ¢ l l'
function 0 .

* P100 shows better speedup Coloring Atomic
e Similar performance in CUDA

17

Performance In structured computation

o Effectiveness of mixed Elapsed time per EBE call (ms)
structured/unstructured computation m Tetra © Voxel
: : 20
« With mixed structured/unstructured

computation 16
K40 and P100

e 2.519 867 tetrahedral elements
204,185 voxels and 1,294,757 3
tetrahedral elements

12

P100

e 1.81 times speedup In structured 0
computation part

K40

18

Performance In the solver
e 82,196,106 DOF and 19,921,530 elements

of CPU/node GPU/node Hardware peak Memory

nodes FLOPS bandwidth
K computer 8 1 x SPARCG64 IlIfx - 1.02 TFLOPS 512 GB/s
GPU cluster 8 2 X Xeon E5-2695 v2 1 x K40 34.3 TFLOPS 2.30 TB/s
NVIDIADGX-1 1 2 X Xeon E5-2698 v4 8 x P100 84.8 TFLOPS 5.76 TB/s
* 19.6 times speedup for DGX-1 in the EBE kernel

Computation time in Elapsed time (s)
the EBE kernel m Target part ® Other part(CPU)

K computer

GPU cluster (K40)

DGX-1 (P100)

30 40 50

Conclusion

e Accelerate the EBE kernel on unstructured implicit low-order
finite element solvers by OpenACC
* Design the solver that attains equal granularity at many cores
* Port GPUs to the key kernel

e Obtain high performance with low development costs
o Computation in low power consumption
e Many-case simulation within short time

* Expect good performance
o With larger GPU-based arichitectures (100 million DOF per P100)
* In other finite-element simulations

