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Introduction

•Contribution of HPC to earthquake mitigation highly anticipated from society

•We are developing comprehensive earthquake simulation that simulate all 
phases of earthquake disaster by full use of K computer system
•Simulate all phases of earthquake required by speeding up core solver
•Nominated for SC14 Gordon Bell Prize Finalist, SC15 Gordon Bell Prize Finalist & 

SC16 Best Poster Finalist

•Today’s topic is porting this solver to GPU-CPU heterogeneous environment
•Report performance on NVIDIA’s newest Pascal GPUs

4Earthquake disaster process

K computer: 8 core CPU x 82944 node system 

with peak performance of 10.6 PFLOPS



Comprehensive earthquake simulation
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a) Earthquake wave propagation
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c) Resident evacuation

b) City response simulation

Shinjuku

Two million agents evacuating to nearest safe site

Tokyo station

Ikebukuro

Shibuya

Shinbashi

Ueno
Earthquake Post earthquake

World’s largest finite-element simulation 

enabled by developed solver 
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City simulation

Visualized by CYBERNET SYSTEMS CO., LTD



Target problem

•Solve large matrix equation many times
•Arises from unstructured finite-element analyses used in many 

components of comprehensive earthquake simulation
•Involves many random data access & communication

•Difficulty of problem
•Attaining load balance & peak-performance & convergency of iterative 

solver & short time-to-solution at same time
•Smart use of compute precision space, constraints in solver search 

space according to physical solution space required
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Ku = f

Sparse, symmetric positive definite matrix

Unknown vector with 1 trillion degrees of freedom

Outer force vector



Designing scalable & fast finite-element 
solver

•Design algorithm that can obtain equal granularity at O(million) 
cores
•Matrix-free matrix-vector product (Element-by-Element method) is 

promising: Good load balance when elements per core is equal
•Also high-peak performance as it is on-cache computation
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Designing scalable & fast finite-element 
solver

•Conjugate-Gradient method + Element-by-Element method + 
simple preconditioner

Scalability & peak-performance good, but poor convergency

Time-to-solution not good

•Conjugate-Gradient method + sophisticated preconditioner
Convergency good, but scalability or peak-performance (sometimes 

both) not good

Time-to-solution not good
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Designing scalable & fast finite-element 
solver

•Conjugate-Gradient method + Element-by-Element method + 
Multi-grid + Mixed-Precision + Adaptive preconditioner

Scalability & peak-performance good (all computation based on 
Element-by-Element), convergency good

Time-to-solution good

•Key to make this solver even faster:
•Make Element-by-Element method super fast
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Fast Element-by-Element method

•Element-by-Element method for unstructured mesh involves many random access & 
computation
•Use structured mesh to reduce these costs

•Fast & scalable solver algorithm + fast Element-by-Element method
•Enables very good scalability & peak-performance & convergency & time-to-solution on K computer
•Nominated as Gordon Bell prize finalists for SC14 and SC15
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Motivation & aim of this study

•Demand for conducting comprehensive earthquake simulations on 
variety of compute systems
•Joint projects ongoing with government/companies for actual use in disaster 

mitigation

•Users have access to different types of compute environment

•Advance in GPU accelerator systems
•Improvement in compute capability & performance-per-watt

•We aim to port high-performance CPU based solver to GPU-CPU 
heterogeneous systems
•Extend usability to wider range of compute systems & attain further speedup
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Porting approach

•Same algorithm expected to be more effective on GPU-CPU 
heterogeneous systems
•Use of mixed precision (most computation is done in single precision 

instead of double precision) more effective

•Reducing random access by structured mesh more effective

•Developing high-performance Element-by-Element kernel for 
GPU becomes key for fast solver

•Our approach: attain high-performance with low porting cost
•Directly port CPU code for simple kernels by OpenACC

•Redesign algorithm of Element-by-Element kernel for GPU 

13



Element-by-Element kernel algorithm for CPUs

•Element-by-Element kernel involves data recurrence

•Algorithm for avoiding data recurrence on CPUs
•Use temporary buffers per core & per SIMD lane

•Suitable for small core counts with large cache capacity
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Element-by-Element kernel algorithm for GPUs

•GPU: designed to hide latency by running many threads on 103

physical cores
•Cannot allocate temporary buffers per thread on GPU memory

•Algorithm for adding up thread-wise results on GPUs
•Coloring often used for previous GPUs
•Algorithm independent of cache and atomics

•Recent GPUs have improved cache and atomics
•Using atomics expected to improve performance as data (u) can be reused on cache
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!$ACC DATA PRESENT(…)

…

!$ACC PARALLEL LOOP

do i=1,ne

! read arrays

...

! compute Ku

Ku11=…

Ku12=…

...

! add to global vector

!$ACC ATOMIC

f(1,cny1)=Ku11+f(1,cny1)

!$ACC ATOMIC

f(2,cny1)=Ku21+f(2,cny1)

...

!$ACC ATOMIC

f(3,cny4)=Ku34+f(3,cny4)

enddo

!$ACC END DATA

Implementation of GPU computation

•OpenACC: Port to GPU by 
inserting a few directives
•Parallelize

•Atomically operate to avoid 
data race (atomic version) 

•Reduce CPU-GPU data 
transfer to the minimum

•Launch threads for the 
element loop i
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!$ACC DATA PRESENT(...) 

...

do icolor=1,ncolor

!$ACC PARALLEL LOOP 

do i=ns(icolor),ne(icolor)

! read arrays

...

! compute Ku 

Ku11=…

Ku12=…

...

! add to global vector

f(1,cny1)=Ku11+f(1,cny1)

f(2,cny1)=Ku21+f(2,cny1)

...

f(3,cny4)=Ku34+f(3,cny4)

enddo

enddo

!$ACC END DATA

a) Coloring add b) Atomic add



Comparison of algorithms

•Coloring and Atomics
•With pure unstructured computation

•NVIDIA K40 and P100 with OpenACC
•K40:  4.29 TFLOPS (SP)

•P100: 10.6 TFLOPS (SP)

•10,427,823 DOF and 2,519,867 elements

•Atomics is faster algorithm
•High data locality and enhanced atomic 

function

•P100 shows better speedup

•Similar performance in CUDA
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Performance in structured computation

•Effectiveness of mixed 
structured/unstructured computation
•With mixed structured/unstructured 

computation

•K40 and P100

•2,519,867 tetrahedral elements 
204,185 voxels and 1,294,757 

tetrahedral elements

•1.81 times speedup in structured 
computation part 
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Performance in the solver
•82,196,106 DOF and 19,921,530 elements

•19.6 times speedup for DGX-1 in the EBE kernel
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DGX-1 (P100)

GPU cluster (K40)

K computer

Computation time in 
the EBE kernel

# of 

nodes

CPU/node GPU/node Hardware peak 

FLOPS

Memory

bandwidth

K computer 8 1 x SPARC64 IIIfx - 1.02 TFLOPS 512 GB/s

GPU cluster 8 2 x Xeon E5-2695 v2 1 x K40 34.3 TFLOPS 2.30 TB/s

NVIDIA DGX-1 1 2 x Xeon E5-2698 v4 8 x P100 84.8 TFLOPS 5.76 TB/s
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Conclusion

•Accelerate the EBE kernel on unstructured implicit low-order 
finite element solvers by OpenACC
•Design the solver that attains equal granularity at many cores

•Port GPUs to the key kernel

•Obtain high performance with low development costs
•Computation in low power consumption

•Many-case simulation within short time

•Expect good performance
•With larger GPU-based arichitectures (100 million DOF per P100)

•In other finite-element simulations
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