
ORNL is managed by UT-Battelle
for the US Department of Energy

Towards Achieving Performance
Portability Using Directives for
Accelerators

M. Graham Lopez, Veronica Vergara Larrea,
Wayne Joubert, Oscar Hernandez, Azzam
Haidar, Stanimire Tomov, Jack Dongarra

WACCPD 2016
Salt Lake City, 14 Nov 2016

2 Presentation name

Directives for Performance Portability

• These are the expected solutions for CORAL
• Some questions remain:

– What are the performance tradeoffs for using different “modes” in OpenMP?
– Where are we -- what is the current* status of ”production ready”

performance portability?

3 Presentation name

OpenMP 4.x – offloading

• There are (at least) now two models
offered by the OpenMP standard:
– “shared memory” (traditional 3.x)
– “offload” (4.x support for discrete accelerators)

• How does a programmer pick and write
performance portable code across both
architectures?
– shared memory is simpler (Intel)
– are there tradeoffs for ”offloading”, even to

self?

4 Presentation name

OpenMP 4.x – offloading

• Different capabilities on different architectures
• Best of both worlds? ”shared + target”

5 Presentation name

OpenMP styles

serial omp 3.x / “shared”

6 Presentation name

OpenMP styles

”shared + target” omp 4.x “offload”

7 Presentation name

Intel Phi (Beacon)

8 Presentation name

Intel Phi (Beacon)

1. Native Phi always best
2. No overhead for 4.x

on CPU only
3. Both modes of offload

CPUàPhi do poorly

9 Presentation name

GPU (Chester)

10 Presentation name

Intermediate observations

• The Intel compiler provided good performance using the self-offload
approach that was nearly as effective as native OpenMP 3.1. This is an
existence proof that the approach can in principle work.

• The Cray compiler on Chester, a GPU-based system, generated good
code using standard approaches but did not perform well using self-
offload.

• To satisfy portability, a standards-based approach seems most
reasonable. OpenMP’s directives-based approach is one of a handful of
current candidates

• OpenMP can, at least in principle, enable some performance portability
across the two architectural “swim-lanes”

• More work to do: POWER 8+, self-offloading, more GA implementations,
multiple accelerators

11 Presentation name

HACK-mk – CORAL benchmark

12 Presentation name

HACK-mk – CORAL benchmark

• Cray compiler OpenACC
advantage for large sizes

– forced manual inlining helped with
loop scheduling and shared
memory footprint

• Phi’s long vector units help
more at large problem sizes

• Host offloading (Cray OpenMP,
PGI OpenACC)

– all performed badly
– poor SSE instruction support
– poor vector support for intrinsics

(powf)

13 Presentation name

HACK-mk – CORAL benchmark

• Success of performance
portability is very dependent on
implementation

– Programming model differences
are not yet a deciding factor (for
performance)

– Different behaviors are still
limiting PP (e.g. Intel ignores
target directives in self-hosted
mode)

– SIMD directive is surprisingly
helpful, across platforms and
implementations

14 Presentation name

Even more “lessons learned”

DLA – DAXPY, DGEMV/N, DGEMV/T
• DAXPY, DGEMV/T: PP was generally

good
– OpenMP4/Phi, OpenMP3.1/Phi,

OpenMP4/GPU, OpenACC/GPU

• DGEMV/N: mixed results
– difficulty in optimizing non-stride-1

arithmetic
– slightly more complex code logic

Jacobi
• Can achieve good performance

across hardware, but best
performance still uses different styles
– self-hosted Phi; OMP 4.5 offloading GPU

• OMP 4.5 model is only currently PP
option for “self-offloading”

15 Presentation name

Questions?

