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Directives for Performance Portability

• These are the expected solutions for CORAL
• Some questions remain:

– What are the performance tradeoffs for using different “modes” in OpenMP?
– Where are we -- what is the current* status of ”production ready” 

performance portability?
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OpenMP 4.x – offloading

• There are (at least) now two models 
offered by the OpenMP standard:
– “shared memory” (traditional 3.x)
– “offload” (4.x support for discrete accelerators)

• How does a programmer pick and write 
performance portable code across both 
architectures?
– shared memory is simpler (Intel)
– are there tradeoffs for ”offloading”, even to 

self?
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OpenMP 4.x – offloading

• Different capabilities on different architectures
• Best of both worlds? ”shared + target”
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OpenMP styles

serial omp 3.x / “shared”
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OpenMP styles

”shared + target” omp 4.x “offload”
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Intel Phi (Beacon)
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Intel Phi (Beacon)

1. Native Phi always best
2. No overhead for 4.x 

on CPU only
3. Both modes of offload 

CPUàPhi do poorly
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GPU (Chester)
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Intermediate observations

• The Intel compiler provided good performance using the self-offload 
approach that was nearly as effective as native OpenMP 3.1.  This is an 
existence proof that the approach can in principle work.

• The Cray compiler on Chester, a GPU-based system, generated good 
code using standard approaches but did not perform well using self-
offload.  

• To satisfy portability, a standards-based approach seems most 
reasonable.  OpenMP’s directives-based approach is one of a handful of 
current candidates

• OpenMP can, at least in principle, enable some performance portability 
across the two architectural “swim-lanes”

• More work to do: POWER 8+, self-offloading, more GA implementations, 
multiple accelerators
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HACK-mk – CORAL benchmark
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HACK-mk – CORAL benchmark

• Cray compiler OpenACC
advantage for large sizes

– forced manual inlining helped with 
loop scheduling and shared 
memory footprint

• Phi’s long vector units help 
more at large problem sizes

• Host offloading (Cray OpenMP, 
PGI OpenACC)

– all performed badly
– poor SSE instruction support
– poor vector support for intrinsics

(powf)



13 Presentation name

HACK-mk – CORAL benchmark

• Success of performance 
portability is very dependent on 
implementation

– Programming model differences 
are not yet a deciding factor (for 
performance)

– Different behaviors are still 
limiting PP (e.g. Intel ignores 
target directives in self-hosted 
mode)

– SIMD directive is surprisingly 
helpful, across platforms and 
implementations



14 Presentation name

Even more “lessons learned”

DLA – DAXPY, DGEMV/N, DGEMV/T
• DAXPY, DGEMV/T: PP was generally 

good
– OpenMP4/Phi, OpenMP3.1/Phi, 

OpenMP4/GPU, OpenACC/GPU

• DGEMV/N: mixed results
– difficulty in optimizing non-stride-1 

arithmetic
– slightly more complex code logic

Jacobi
• Can achieve good performance 

across hardware, but best 
performance still uses different styles
– self-hosted Phi; OMP 4.5 offloading GPU

• OMP 4.5 model is only currently PP 
option for “self-offloading”
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Questions?


