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Directive-based Accelerator Programming Models 

2	

Hi
gh
er
	P
er
fo
rm

an
ce
	

Lo
w
er
	D
ev
el
op

m
en

t	E
ffo

rt
	



Software-managed Cache In GPUs 
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__QUALIFIER__ float smc[1024]; 
smc[threadIdx.x] = 0; 
... 
float sum = a[i] + smc[threadIdx.x] 
... 

DRAM	

GPU	core	#1	
	
	 SIMD	SMC	

GPU	core	#2	
	
	 SIMD	SMC	



Software-managed Cache Performance Potential In OpenACC 

•  1D Stencil 30-element radius 
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Naïve	implementaAon	downgrades	performance,	undesirably.	
Cache	sharing	is	crucial	to	deliver	speedup	over	the	baseline.	



Overview 

•  Key contribution: 
•  Investigating essential optimizations to implement OpenACC cache directive 

efficiently 

•  Motivation: 
•  Software-managed cache creates a significant gap between OpenACC and CUDA 

applications 
•  OpenACC cache directive can narrow down this gap, potentially 
•  Naïve cache implementation, inversely, downgrades performance 

•  Goals: 
•  Investigating challenges in implementing cache directive efficiently 
•  Introducing compiler passes to implement cache directive 

•  Findings: 
•  Sharing cache space among chunk of parallel iterations is essential optimization 
•  Best implementation performs very close to CUDA equivalent 
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Outline 

•  cache Directive Syntax/Usage 
•  Proposed Implementations 

•  Emulating Hardware Cache 
•  Range-based Conservative 
•  Range-based Intelligent 

•  Optimizations 
•  Cache fetch 
•  Cache sharing 
•  Cache write policy 
•  Index mapping 

•  Evaluations 
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cache Directive 

•  From OpenACC API Standard: 
•  “The cache directive may appear at the top of (inside of) a loop. It specifies array 

elements or subarrays that should be fetched into the highest level of the cache for 
the body of the loop.” 

•  Syntax: 
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#pragma acc cache(var-list) 
{ 
    // cache region 
} 

Var-list e.g. array[start:length] 



cache Directive Usage 

•  Example: 
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#pragma acc data copy(a[0:LEN],b[0:LEN]) 
for(n=0; n<K; ++n){ 
  #pragma acc parallel loop 
  for(i=1; i<LEN-1; ++i){ 
    int lower = i-1, upper = i+1; 
    float sum = 0; 
    #pragma acc cache(a[(i-1):3]) 
    { 
      for(j=lower; j<=upper; ++j) 
        sum += a[j]; 
    } 
    b[i] = sum/(upper-lower+1); 
  } 
  float *tmp=a; a=b; b=tmp; 
} 



Proposed Implementations 

•  First: Emulating Hardware Cache (EHC) 
•  Data & Tag arrays are allocated in the cache 
•  Tag can be direct-map, set-associative, or fully-associative 

•  Pros and Cons: 
•  Adapts to available cache size 
•  Allows fully or partially caching the subarray 
•  Storing Tag array shrinks effective cache size 
•  Maintaining Tag array imposes performance overhead (minimum of two cache 

accesses per request) 
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Proposed Implementations (2) 

•  Second: Range-based Conservative (RBC) 
•  Data array is allocated in the cache 
•  Two pointers keep track of the elements stored in the cache; start and end 
•  If requests fall within start and end, data is read from the cache, otherwise global 

access is made. 

•  Pros and Cons: 
•  One cache access to read/write 
•  Simple mapping from global to cache space (1 subtraction) 
•  Scales to multi-dimensional by storing a pair per dimension 
•  Control-flow overhead to assure data is cached 
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Proposed Implementations (3) 

•  Third: Range-based Intelligent (RBI) 
•  Same as RBC, except avoiding control-flow overhead for cache accesses 
•  Assumes accesses fall within the cached range, relying on OpenACC 2.5 spec. 

•  Pros and Cons: 
•  Cache read/write involves one subtraction (for mapping) and one cache load/write 
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Optimizations 

•  Cache fetch 
•  Cache sharing 
•  Cache write policy 
•  Index mapping 
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Optimization: Cache Fetch 

•  Cache fetch routine is called before cache region starts, once per parallel 
iteration 
•  Critical to optimize if cache region is small 
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void __cache_fetch(subarray, start, length){ 
  for(int i=0; i<length; ++i) 
    __cache[i] = subarray[i+start]; 
} 

__cache_fetch(); 
// #pragma acc cache(subarray[]) 
{ 
    // cache region 
} 



Optimization: Cache Fetch (2) 

•  Loop unrolling, if the subarray size is known 
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void __cache_fetch(subarray, start){ 
  // length is know to be 3, statically 
  __cache[0] = subarray[0+start]; 
  __cache[1] = subarray[1+start]; 
  __cache[2] = subarray[2+start]; 
} 

void __cache_fetch(subarray, 
                   start, length){ 
  for(int i=0; i<length; ++i) 
    __cache[i] = subarray[i+start]; 
} 



Optimization: Cache Fetch (3) 

•  Share loop among multiple subarrays 
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void __cache_fetch(length, 
  subarr1, subarr2, subarr3, 
  start1, start2, start3){ 
  for(int i=0; i<length; ++i) 
    __cache_s1[i] = subarr1[i+start1]; 
    __cache_s2[i] = subarr2[i+start2]; 
    __cache_s3[i] = subarr3[i+start3]; 
  } 
} 

void __cache_fetch(subarray, 
                   start, length){ 
  for(int i=0; i<length; ++i) 
    __cache[i] = subarray[i+start]; 
} 



Optimization: Cache Fetch (4) 

•  Using parallel threads to reduce loop iterations (or omitting the loop) 
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void __cache_fetch(sa, 
                   start, length){ 
  uint tid = threadIdx.x; 
  uint d   = blockDim.x; 
  __cache[tid] = sa[tid+start]; 
  __cache[d*1+tid] = sa[d*1+tid+start]; 
  __cache[d*2+tid] = sa[d*2+tid+start]; 
  ... 
} 

void __cache_fetch(subarray, 
                   start, length){ 
  for(int i=0; i<length; ++i) 
    __cache[i] = subarray[i+start]; 
} 

void __cache_fetch(sa, 
                   start, length){ 
  for(int i=threadIdx.x; 
          i<length; 
          i+=blockDim.x) 
    __cache[i] = sa[i+start]; 
} 



Optimization: Cache Sharing 

•  What sharing means? 
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Subarray	

IteraAon	#1	

IteraAon	#2	

IteraAon	#3	

IteraAon	#X	
This	is	
private!	

IteraAon	#1,	#2,	#3	

Fetch	once	
and	share	



Optimization: Cache Sharing (2) 

•  How to share the cache? 
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Subarray	

CUDA	GPU	Core	
	
	
	
	
	
	
	

SIMD	
	
	
	
	
	
	

Shared	Memory	
	
	
	
	
	
	

The	problem	is	
finding	subarrays	

that	can	be	shared?	



Optimization: Cache Sharing (3) 

•  Problem: 
•  How to find out if subarray can be shared? 

•  Inputs:  
•  Specifications of outer parallel loops (# of iterations, increment steps) 
•  Cache directive’s subarray’s start & length 

•  Output: 
•  Subarrays that can be shared 
•  If subarray can be shared, pointers pointing to the location of cache associated with 

the iteration, in the shared space 
•  If subarray can be shared, size of the new shared cache 
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Optimization: Cache Sharing (4) 

•  Proposed compiler pass to find sharable caches: 
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input: 
 SBs <= subarrays listed in cache directive 
 IDs <= induction variables associated 
        with outer parallel loops 
 LPs <= outer parallel loops increment steps 
 
output: 
 SHs <= boolean vector indicating the 
         subarary is shared among 
         iterations or not 
 RGs <= an expression pointing to 
         beginning of the range cached 
         for the iteration 
 CSs <= cache size associated with each SBs 

for sb in SBs: 
  start, length <= sb 
  A, B <= decompose(start, IDs) 
  if (A in IDs) and (abs(LPs[A]) == 1): 
    // subarray can be shared 
    SHs[sb] = True 
    CSs[sb] = length+blockDim.x 
    RGs[sb] = A + B – LPs[A] * threadIdx.x 
  else: 
    SHs[sb] = False 
    CSs[sb] = length 
    RGs[sb] = start 

decompose()	rouPne	calculates	AST	tree	of	start	and	reforms	
start	expression	in	A+B	(if	possible)	where:	

A	expression	is	a	variable	listed	in	IDs	
B	expression	is	not	composed	of	any	variable	listed	in	IDs	

This	pass	can	simply	be	extended	to	support	mulA-dimensional	subarrays.	



Optimization: Cache Write Policy 

•  Write-back 
•  Buffers cache writes and writes final changes back to DRAM at the end of the cache 

region 
•  Keep track of dirty lines: a mask per word or assume all lines are dirty 

•  Write-through 
•  Write data both in the cache and global memory upon every write 
•  No extra work at the end of cache region 
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Optimization: Index Mapping 

•  Mapping global indexes to the locations in the cache requires mapping 
•  e.g. a subtract in RBC and RBI 

•  For each subarray access, mapped index can be recorded in registerfile 
to be reused (instead of recalculating on demand) 
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... 
float sum = 0; 
#pragma acc cache(a[(i-1):3]) 
{ 
  for(j=lower; j<=upper; ++j) 
    sum += a[j]; 
} 
... 

... 
  for(j=lower; j<=upper; ++j) 
    sum += a_cache[j-(i-1)]; 
... 

... 
int index_0 = j-(i-1); 
... 

... 
  for(j=lower; j<=upper; ++j) 
    sum += a_cache[index_0]; 
... 



Evaluations Setup 

•  OpenACC Compiler: 
•  IPMACC + CUDA Runtime 

•  Hardware 
•  NVIDIA Tesla K20c 

•  Benchmarks 
•  GEMM 
•  N-Body Simulation 
•  Jacobi Iterations 

•  Code versions to compare performance and development effort: 
•  Baseline OpenACC without cache directive 
•  OpenACC + cache directive (with RBC or RBI implementations) 
•  Hand-written CUDA optimized for shared memory 
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Development Effort 

•  OpenACC+cache development effort is close to OpenACC 
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Performance 

•  GEMM 
•  RBI 2.18X faster than no-cache baseline OpenACC, 8% gap between CUDA and RBI 
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12x	saving	in	memory	loads,	
compared	to	baseline	OpenACC	



Performance (2) 

•  N-Body Simulation 
•  RBI 95%-113% faster than no-cache baseline OpenACC, 9% gap between RBI and 

CUDA 
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Performance (3) 

•  Jacobi Iteration 
•  RBI 6%-10% faster than no-cache baseline OpenACC,  
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Cache Write 

•  Synthetic workloads with different memory patterns: 
•  Dense and Regular 

•  Iterations write consequent words, repeatedly 
•  Sparse 

•  Fraction of the iterations write arbitrary words, repeatedly 

•  Parameters of these workloads: 
•  Parallel iterations or total work 
•  Serial iterations within the work or write frequency 
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for i in 1 to total_work 
#pragma acc cache(subarray[]) 
{ 
  for j in 1 to write_frequency 
    write to subarray[] 
} 



Cache Write Performance Investigation 

•  Write-back outperform write-through when write frequency is high 
•  Write-through outperforms write-back when memory BW is not 

saturated (e.g. small dataset) 
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Conclusion  

•  Studied and addressed challenges facing cache directive implementation 
in CUDA 
•  Three different implementation proposed 
•  Found out cache sharing is essential to deliver performance 

improvement 
•  Found out cache directive can improve performance by 2.18x, compared 

to baseline OpenACC without using cache 
•  Implementation/Benchmarks available online: 

•  https://www.github.com/lashgar/ipmacc 

•  There is more on the paper: compiler passes to support multi-
dimensional array, micro-benchmarking CUDA shared memory to 
understand best performance. 
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Thank	You!	
QuesAons?	



Backup Slides 
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EHC Example 
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RBC Example 

•  RBI is the same, minus  
“if” control-flow statement 
where assumed it’s always 
TRUE. 
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CUDA Shared Memory Bank-Conflict Evaluations 
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CUDA Shared Memory Bank-Conflict Evaluations (2) 
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