
OpenACC cache Direc.ve:
Opportuni.es and Op.miza.ons

Ahmad	Lashgar	&	Amirali	Baniasadi	

ECE	Department	
University	of	Victoria	

	
	

November	4,	2016	
1	

Directive-based Accelerator Programming Models

2	

Hi
gh
er
	P
er
fo
rm

an
ce
	

Lo
w
er
	D
ev
el
op

m
en

t	E
ffo

rt
	

Software-managed Cache In GPUs

3	

__QUALIFIER__ float smc[1024];
smc[threadIdx.x] = 0;
...
float sum = a[i] + smc[threadIdx.x]
...

DRAM	

GPU	core	#1	
	
	 SIMD	SMC	

GPU	core	#2	
	
	 SIMD	SMC	

Software-managed Cache Performance Potential In OpenACC

•  1D Stencil 30-element radius

4	
Naïve	implementaAon	downgrades	performance,	undesirably.	
Cache	sharing	is	crucial	to	deliver	speedup	over	the	baseline.	

Overview

•  Key contribution:
•  Investigating essential optimizations to implement OpenACC cache directive

efficiently

•  Motivation:
•  Software-managed cache creates a significant gap between OpenACC and CUDA

applications
•  OpenACC cache directive can narrow down this gap, potentially
•  Naïve cache implementation, inversely, downgrades performance

•  Goals:
•  Investigating challenges in implementing cache directive efficiently
•  Introducing compiler passes to implement cache directive

•  Findings:
•  Sharing cache space among chunk of parallel iterations is essential optimization
•  Best implementation performs very close to CUDA equivalent

5	

Outline

•  cache Directive Syntax/Usage
•  Proposed Implementations

•  Emulating Hardware Cache
•  Range-based Conservative
•  Range-based Intelligent

•  Optimizations
•  Cache fetch
•  Cache sharing
•  Cache write policy
•  Index mapping

•  Evaluations

6	

cache Directive

•  From OpenACC API Standard:
•  “The cache directive may appear at the top of (inside of) a loop. It specifies array

elements or subarrays that should be fetched into the highest level of the cache for
the body of the loop.”

•  Syntax:

7	

#pragma acc cache(var-list)
{
 // cache region
}

Var-list e.g. array[start:length]

cache Directive Usage

•  Example:

8	

#pragma acc data copy(a[0:LEN],b[0:LEN])
for(n=0; n<K; ++n){
 #pragma acc parallel loop
 for(i=1; i<LEN-1; ++i){
 int lower = i-1, upper = i+1;
 float sum = 0;
 #pragma acc cache(a[(i-1):3])
 {
 for(j=lower; j<=upper; ++j)
 sum += a[j];
 }
 b[i] = sum/(upper-lower+1);
 }
 float *tmp=a; a=b; b=tmp;
}

Proposed Implementations

•  First: Emulating Hardware Cache (EHC)
•  Data & Tag arrays are allocated in the cache
•  Tag can be direct-map, set-associative, or fully-associative

•  Pros and Cons:
•  Adapts to available cache size
•  Allows fully or partially caching the subarray
•  Storing Tag array shrinks effective cache size
•  Maintaining Tag array imposes performance overhead (minimum of two cache

accesses per request)

9	

Proposed Implementations (2)

•  Second: Range-based Conservative (RBC)
•  Data array is allocated in the cache
•  Two pointers keep track of the elements stored in the cache; start and end
•  If requests fall within start and end, data is read from the cache, otherwise global

access is made.

•  Pros and Cons:
•  One cache access to read/write
•  Simple mapping from global to cache space (1 subtraction)
•  Scales to multi-dimensional by storing a pair per dimension
•  Control-flow overhead to assure data is cached

10	

Proposed Implementations (3)

•  Third: Range-based Intelligent (RBI)
•  Same as RBC, except avoiding control-flow overhead for cache accesses
•  Assumes accesses fall within the cached range, relying on OpenACC 2.5 spec.

•  Pros and Cons:
•  Cache read/write involves one subtraction (for mapping) and one cache load/write

11	

Optimizations

•  Cache fetch
•  Cache sharing
•  Cache write policy
•  Index mapping

12	

Optimization: Cache Fetch

•  Cache fetch routine is called before cache region starts, once per parallel
iteration
•  Critical to optimize if cache region is small

13	

void __cache_fetch(subarray, start, length){
 for(int i=0; i<length; ++i)
 __cache[i] = subarray[i+start];
}

__cache_fetch();
// #pragma acc cache(subarray[])
{
 // cache region
}

Optimization: Cache Fetch (2)

•  Loop unrolling, if the subarray size is known

14	

void __cache_fetch(subarray, start){
 // length is know to be 3, statically
 __cache[0] = subarray[0+start];
 __cache[1] = subarray[1+start];
 __cache[2] = subarray[2+start];
}

void __cache_fetch(subarray,
 start, length){
 for(int i=0; i<length; ++i)
 __cache[i] = subarray[i+start];
}

Optimization: Cache Fetch (3)

•  Share loop among multiple subarrays

15	

void __cache_fetch(length,
 subarr1, subarr2, subarr3,
 start1, start2, start3){
 for(int i=0; i<length; ++i)
 __cache_s1[i] = subarr1[i+start1];
 __cache_s2[i] = subarr2[i+start2];
 __cache_s3[i] = subarr3[i+start3];
 }
}

void __cache_fetch(subarray,
 start, length){
 for(int i=0; i<length; ++i)
 __cache[i] = subarray[i+start];
}

Optimization: Cache Fetch (4)

•  Using parallel threads to reduce loop iterations (or omitting the loop)

16	

void __cache_fetch(sa,
 start, length){
 uint tid = threadIdx.x;
 uint d = blockDim.x;
 __cache[tid] = sa[tid+start];
 __cache[d*1+tid] = sa[d*1+tid+start];
 __cache[d*2+tid] = sa[d*2+tid+start];
 ...
}

void __cache_fetch(subarray,
 start, length){
 for(int i=0; i<length; ++i)
 __cache[i] = subarray[i+start];
}

void __cache_fetch(sa,
 start, length){
 for(int i=threadIdx.x;
 i<length;
 i+=blockDim.x)
 __cache[i] = sa[i+start];
}

Optimization: Cache Sharing

•  What sharing means?

17	

Subarray	

IteraAon	#1	

IteraAon	#2	

IteraAon	#3	

IteraAon	#X	
This	is	
private!	

IteraAon	#1,	#2,	#3	

Fetch	once	
and	share	

Optimization: Cache Sharing (2)

•  How to share the cache?

18	

Subarray	

CUDA	GPU	Core	
	
	
	
	
	
	
	

SIMD	
	
	
	
	
	
	

Shared	Memory	
	
	
	
	
	
	

The	problem	is	
finding	subarrays	

that	can	be	shared?	

Optimization: Cache Sharing (3)

•  Problem:
•  How to find out if subarray can be shared?

•  Inputs:
•  Specifications of outer parallel loops (# of iterations, increment steps)
•  Cache directive’s subarray’s start & length

•  Output:
•  Subarrays that can be shared
•  If subarray can be shared, pointers pointing to the location of cache associated with

the iteration, in the shared space
•  If subarray can be shared, size of the new shared cache

19	

Optimization: Cache Sharing (4)

•  Proposed compiler pass to find sharable caches:

20	

input:
 SBs <= subarrays listed in cache directive
 IDs <= induction variables associated
 with outer parallel loops
 LPs <= outer parallel loops increment steps

output:
 SHs <= boolean vector indicating the
 subarary is shared among
 iterations or not
 RGs <= an expression pointing to
 beginning of the range cached
 for the iteration
 CSs <= cache size associated with each SBs

for sb in SBs:
 start, length <= sb
 A, B <= decompose(start, IDs)
 if (A in IDs) and (abs(LPs[A]) == 1):
 // subarray can be shared
 SHs[sb] = True
 CSs[sb] = length+blockDim.x
 RGs[sb] = A + B – LPs[A] * threadIdx.x
 else:
 SHs[sb] = False
 CSs[sb] = length
 RGs[sb] = start

decompose()	rouPne	calculates	AST	tree	of	start	and	reforms	
start	expression	in	A+B	(if	possible)	where:	

A	expression	is	a	variable	listed	in	IDs	
B	expression	is	not	composed	of	any	variable	listed	in	IDs	

This	pass	can	simply	be	extended	to	support	mulA-dimensional	subarrays.	

Optimization: Cache Write Policy

•  Write-back
•  Buffers cache writes and writes final changes back to DRAM at the end of the cache

region
•  Keep track of dirty lines: a mask per word or assume all lines are dirty

•  Write-through
•  Write data both in the cache and global memory upon every write
•  No extra work at the end of cache region

21	

Optimization: Index Mapping

•  Mapping global indexes to the locations in the cache requires mapping
•  e.g. a subtract in RBC and RBI

•  For each subarray access, mapped index can be recorded in registerfile
to be reused (instead of recalculating on demand)

22	

...
float sum = 0;
#pragma acc cache(a[(i-1):3])
{
 for(j=lower; j<=upper; ++j)
 sum += a[j];
}
...

...
 for(j=lower; j<=upper; ++j)
 sum += a_cache[j-(i-1)];
...

...
int index_0 = j-(i-1);
...

...
 for(j=lower; j<=upper; ++j)
 sum += a_cache[index_0];
...

Evaluations Setup

•  OpenACC Compiler:
•  IPMACC + CUDA Runtime

•  Hardware
•  NVIDIA Tesla K20c

•  Benchmarks
•  GEMM
•  N-Body Simulation
•  Jacobi Iterations

•  Code versions to compare performance and development effort:
•  Baseline OpenACC without cache directive
•  OpenACC + cache directive (with RBC or RBI implementations)
•  Hand-written CUDA optimized for shared memory

23	

Development Effort

•  OpenACC+cache development effort is close to OpenACC

24	

Performance

•  GEMM
•  RBI 2.18X faster than no-cache baseline OpenACC, 8% gap between CUDA and RBI

25	

12x	saving	in	memory	loads,	
compared	to	baseline	OpenACC	

Performance (2)

•  N-Body Simulation
•  RBI 95%-113% faster than no-cache baseline OpenACC, 9% gap between RBI and

CUDA

26	

Performance (3)

•  Jacobi Iteration
•  RBI 6%-10% faster than no-cache baseline OpenACC,

27	

Cache Write

•  Synthetic workloads with different memory patterns:
•  Dense and Regular

•  Iterations write consequent words, repeatedly
•  Sparse

•  Fraction of the iterations write arbitrary words, repeatedly

•  Parameters of these workloads:
•  Parallel iterations or total work
•  Serial iterations within the work or write frequency

28	

for i in 1 to total_work
#pragma acc cache(subarray[])
{
 for j in 1 to write_frequency
 write to subarray[]
}

Cache Write Performance Investigation

•  Write-back outperform write-through when write frequency is high
•  Write-through outperforms write-back when memory BW is not

saturated (e.g. small dataset)

29	

Conclusion

•  Studied and addressed challenges facing cache directive implementation
in CUDA
•  Three different implementation proposed
•  Found out cache sharing is essential to deliver performance

improvement
•  Found out cache directive can improve performance by 2.18x, compared

to baseline OpenACC without using cache
•  Implementation/Benchmarks available online:

•  https://www.github.com/lashgar/ipmacc

•  There is more on the paper: compiler passes to support multi-
dimensional array, micro-benchmarking CUDA shared memory to
understand best performance.

30	

31	

Thank	You!	
QuesAons?	

Backup Slides

32	

EHC Example

33	

RBC Example

•  RBI is the same, minus
“if” control-flow statement
where assumed it’s always
TRUE.

34	

CUDA Shared Memory Bank-Conflict Evaluations

35	

CUDA Shared Memory Bank-Conflict Evaluations (2)

36	

