
An Extension of OpenACC Directives for
Out-of-Core Stencil Computation with

Temporal Blocking

Nobuhiro Miki Fumihiko Ino Kenichi	Hagihara

Graduate	School	of	Information	Science	and	Technology

Osaka	University

for	(t=0;	t<T;	t++)	{	//	time	evolution	 loop
#pragma	acc kernels	loop
for(i=0;	i<N;	i++)	
#pragma	acc loop
for(j=0;	j <N;	j++)

a[i][j]	=	a[i][j-1]	+	a[i-1][j]	
+	a[i][j+1]	+	a[i+1][j];

}

Stencil computation in OpenACC
• Stencil	computation

– A	fixed	pattern	is	iteratively	applied	to	every	data	elements	 to	solve	time	
evolution	equations

– Usually	accelerated	on	a	GPU	equipped	with	high	memory	bandwidth
• OpenACC: the	simplest	method	for	developing	GPU	code

– Useful	to	separate	accelerator-specific	 code	from	CPU	code
• OpenACC is	not	a	perfect	 solution	for	out-of-core	 data

① Limited	problem	size	due	to	exhaustion	of	GPU	memory
② Time	evolving	iterations	can	transfer	many	data	between	CPU	and	GPU

WACCPD2016 2Memory	architectureStencil	code	in	OpenACC

CPU GPU

Host	Memory
1.5	TB

Device	Memory
16	GB

32	GB/s

512	GB/s77	GB/s

Out-of-core code with temporal blocking
• Data	decomposition	and	

temporal	blocking	are	
useful	for	tackling	these	
issues

• The	performance	
portability	is	degraded	
due	to	code	modification
– Accelerator-specific	 code	is	

mixed	with	the	essence	of	
computation

WACCPD2016 3

allocate	buf_p[0],	...,	buf_p[num_queue]	on	host	memory;
#pragma	acc create	(buf_p [0:num_queue]	[0:b+2*h*k],	...)

for	(n=0;	n<T;	n+=k)	 {
for	(c=0;	c<d;	c++)	{	

set	si as	the	id	of	an	idle	queue;	//	0	<=	si <num_queue
copy	chunk	from	p	to	buf_p[si];
#pragma	acc update	device	(buf_p [si:1][0:b+2*h*k],...)	async (si)

for	(i=0;	i<k;	i++)	{
#pragma	acc kernels	present	(buf_p[si:1][0:b+2*h*k],...)	async(si)
{
offset	=	h*(i+1);
xsize =	b+2*h*(k-1-i);
#pragma	acc loop	independent
for	(x=offset;	x<offset+xsize;	x++)
#pragma	acc loop	independent
for	(y=1;	y<y-1;	y++)
#pragma	acc loop	independent
for	(z=1;	z<z-1;	z++)
buf_q[si][x*y*z+y*z+z]	+=	buf_p[si][(x+1)*y*z+y*z+z]	+	...;

}
buf_p[si]	=	buf_q[si];
}
#pragma	acc update	host	(buf_p [si:1][0:b+2*h*k],	...)	async (si)
copy	chunk	from	buf_p[si]	to	p;
}

}

Modify	indexing	scheme

Modify	loop	structures

Select	an	asynchronous	queue

Allocate	buffers	in	both	host	and	device

Overview
• Goal:	to	facilitate	data	decomposition	and	temporal	blocking	for	

GPU-accelerated	stencil	computation
• Method:	directive-based	approach

① Pipelined	accelerator	(PACC):	an	extension	of	OpenACC directives
② Source-to-source	 translator	for	PACC	->	OpenACC translation

WACCPD2016 4

#pragma	pacc init
#pragma	pacc pipeline	targetinout(work,a)	 size([0:Y][0:X])	halo([1:1][1:1])	async
for(n=0;n<nn;n++){
#pragma	pacc loop	dim(2)
for(x=1;x<X-1;x++)
#pragma	pacc loop	dim(1)
for(y=1;y<Y-1;y++)
work[x][y]	=	(a[x-1][y]	+	…)	;

#pragma	pacc loop	dim(2)
for(x=1;x<X-1;x++)
#pragma	pacc loop	dim(1)
for(y=1;y<Y-1;y++)
a[x][y]	=	work[x][y];

} Stencil	code	with	PACC

PACC(Pipelined ACCelerator) directives

#pragma	pacc init

#pragma	pacc pipeline	targetinout(work,a)	¥
size([0:Y][0:X])	halo([1:1][1:1])	async
for(n=0;n<nn;n++){
#pragma	pacc loop	dim(2)
for(x=1;x<X-1;x++)
#pragma	pacc loop	dim(1)
for(y=1;y<Y-1;y++)
work[x][y]	=	(a[x-1][y]	+	…)	;

#pragma	pacc loop	dim(2)
for(x=1;x<X-1;x++)
#pragma	pacc loop	dim(1)
for(y=1;y<Y-1;y++)
a[x][y]	=	work[x][y]; }

WACCPD2016 5

The	init construct	
allocates	host	and	
device	buffers	for	
realizing	data	
decomposition

• The	pipeline construct	
specifies	 the	code	block	to	
be	processed	in	a	pipeline

• This	construct	can	have	
additional	clauses
• targetin

• names of read-only arrays
• targetinout

• names of writable arrays
• size

• array size
• halo

• halo region size
• async

• async flag

The	loop construct	
indicates	which	array	
dimension	corresponds	
to	the	loop	control	
variable

• PACC	extends	OpenACC directives	with	three	constructs

Overview of PACC translator
1. C/C++	 frontend	generate	an	abstract	syntax	tree	(AST)	of	input	code	using	

the	ROSE	compiler	infrastructure	 [2]
2. The	generated	AST	is	then	traversed	 to	detect	AST	nodes	that	have	

directive	information
3. In	the	next	traversal,	these	detected	nodes	are	updated	according	to	code	

rewrite	rules,	which	we	implemented	for	PACC
4. Finally,	the	transformed	AST	is	given	to	a	code	generator,	which	outputs	

an	out-of-core	 OpenACC code

C / C++
frontend

ROSE compiler framework

Code
generator

Abstract
syntax

tree
(AST)

Code rewrite rules

pragma pacc …
for (…) {}

PACC code

pragma acc …
for (…) {

for (…){ … }
}

OpenACC code
[2] rosecompiler.org.	ROSE	compiler	infrastructure,	2015.	http://rosecompiler.org/.

WACCPD2016 6

Rewrite Rules for Temporal Blocking
• A	cache	optimization	technique	for	time	evolving	 computation

– Computation	area		is	updated	𝑘 (blocking	factor)	steps	for	each	data	transfer
– The	number	of	data	transfer	between	CPU	and	GPU	reduces	 to	1/	𝑘

Apply	Temporal	Blocking

WACCPD2016 7

for	(n=0;	n<T;	n++)	{
data	transfer	from	CPU	to	GPU
kernel	invocation
data	transfer	from	GPU	to	CPU
}

for	(n=0;	n<T;	n+=k)	{	//	outer	loop
data	transfer	from	CPU	to	GPU
for	(i=0;	i<k;	i++)	{				//	inner	loop
kernel	 invocation
}
data	transfer	from	GPU	to	CPU
}

Native	implementation

CPU

GPU

・・・

Process	a	single	time	step

CPU

GPU

Process	k time	step

Data decomposition
• 1-D	block	scheme
• Given	a	stencil	of	(2𝑟 + 1)×(2𝑟 + 1) elements,	each	block	requires	halos	of	

size	𝑟𝑘×𝑌 to	be	processed	 independently
– 𝑟:	the	number	of	neighbor	elements	 in	up/down/left/right	directions

• Decomposed	segments	are	processed	 independently
• A	software	pipeline	is	used	to	overlap	kernel	execution	with	data	transfer
• There	are	two	execution	parameters,	blocking	factor	𝑘 and	block	size	𝑏

• Block
• a	computation	area

• Halo	region
• a	boundary	area
• Transferred	with	Block

• Segment
– Block	+	Halo	region

2𝑟 + 1

2𝑟
+
1

WACCPD2016 8

Block size
Halo region

Halo region

X

Y

Decomposition

b
rk

Original data
Segment

rk

Comparison with in-core implementation

• Out-of-core	performances	were	only	
11%	- 21%	lower than	in-core	
performance

• If	you	accept	these	slowdowns,	you	can	
easily	process	out-of-core	data	with	
PACC	directives

Code Data size Performance

In-core
𝑑- (GB)

Out-of-core
𝑑. (GB)

In-core
𝑝- (GFLOPS)

Out-of-core
𝑝. (GFLOPS)

Slowdown
𝟏 − 𝒑𝟐/𝒑𝟏 (%)

Jacobi 4.6 18.4 32.2 28.5 11

Himeno 2.3 15.0 47.5 37.5 21

CIP 8.2 15.5 83.9 73.4 13

WACCPD2016 9

Experimental	machine
• Intel	Xeon	E5-2680v2	(512	GB)
• NVIDIA	Tesla	K40	(12	GB)
• Ubuntu	15.3
• CUDA	7.0
• PGI	compiler	15.5

WACCPD2016

Tradeoff relation under CIP method

0
10
20
30
40
50
60
70
80

0
50

100
150
200
250
300
350
400

4 8 16 32 64 128 256

Ef
fe

ct
iv

e p
er

fo
rm

an
ce

(G
FL

O
PS

)

Ex
ec

ut
io

n
tim

e (
s)

Blocking factor k

Execution Time Effective Performance

10

Compute-bound
• Temporal	blocking	increased	kernel	execution	time	

slightly	due	to	redundant	computation

Tradeoff	point
• As	we	estimated	before,	the	best	tradeoff	point	was	found
• The	data	transfer	were	fully	overlapped	with	kernel	execution

Memory-bound
• Temporal	blocking	

decreased	data	transfer	time

• The	constraint	interpolation	profile	(CIP)	method	
– A	solver	for	hyperbolic	partial	differential	equations	
– 9-point	2-D	stencil

Conclusion
• PACC:	an	extension	of	OpenACCdirectives	capable	of	
accelerating	out-of-core	stencil	computation	with	
temporal	blocking	on	a	GPU
– A	translator	using	AST-based	transformation

• Experiments
– Out-of-core	performances	were	only	11%	- 21%	lower	than	
in-core	performance

– Tradeoff	relation	between	data	transfer	time	and	kernel	
execution	time

• Future	work
– An	automated	framework	for	finding	best	execution	
parameters	(block	size	and	blocking	factor)

WACCPD2016 11

